AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (7.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Diffusion dynamics and characterization of attogram masses in optically trapped single nanoparticles using laser-induced plasma imaging

Pablo PurohitFrancisco J. FortesJavier Laserna( )
UMALASERLAB, Departamento de Química Analítica, Universidad de Málaga, C/Jiménez Fraud 4, Malaga 29010, Spain
Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
Show Author Information

Graphical Abstract

Wavelength-selected laser-induced plasma imaging monitors and characterizes chemical species released from single nanoparticles with extreme sensitivity.

Abstract

In the present work, a wavelength-selected plasma imaging analysis system is presented and used to track photons emitted from single-trapped nanoparticles in air at atmospheric pressure. The isolated nanoentities were atomized and excited into plasma state using single nanosecond laser pulses. The use of appropriate wavelength filters alongside time-optimized acquisition settings enabled the detection of molecular and atomic emissions in the plasma. The photon detection efficiency of the imaging line resulted in a signal > 400 times larger than the simultaneously-acquired dispersive spectroscopy data. The increase in sensitivity outlined the evolution of diverse physicochemical processes at the single particle scale which included heat and momentum transfer from the plasma into the particle as wells as chemical reactions. The imaging detection of excited fragments evidenced different diffusion kinetics and time frames for atoms and molecules and their influence upon both the spectroscopic emission readout and fabrication processes using the plasma as a reactor. Moreover, the origin of molecular species, whether naturally-occurring or derived from a chemical reaction in the plasma, could also be studied on the basis of compositional gradients found on the images. Limits of detection for the inspected species ranged from tens to hundreds attograms, thus leading to an exceptional sensing principle for single nanoentities that may impact several areas of science and technology.

Electronic Supplementary Material

Download File(s)
12274_2022_5355_MOESM1_ESM.pdf (738.3 KB)

References

[1]

Jørgensen, J. T.; Norregaard, K.; Tian, P. F.; Bendix, P. M.; Kjaer, A.; Oddershede, L. B. Single particle and PET-based platform for identifying optimal plasmonic nano-heaters for photothermal cancer therapy. Sci. Rep. 2016, 6, 30076.

[2]

Jauffred, L.; Samadi, A.; Klingberg, H.; Bendix, P. M.; Oddershede, L. B. Plasmonic heating of nanostructures. Chem. Rev. 2019, 119, 8087–8130.

[3]

Liu, Q.; Zhang, Y. X.; Peng, C. S.; Yang, T. S.; Joubert, L. M.; Chu, S. Single upconversion nanoparticle imaging at sub-10 W cm−2 irradiance. Nat. Photonics 2018, 12, 548–553.

[4]

Prigozhin, M. B.; Maurer, P. C.; Courtis, A. M.; Liu, N.; Wisser, M. D.; Siefe, C.; Tian, B.; Chan, E.; Song, G. S.; Fischer, S. et al. Bright sub-20-nm cathodoluminescent nanoprobes for electron microscopy. Nat. Nanotechnol. 2019, 14, 420–425.

[5]

Kohli, R. K.; Davies, J. F. Measuring the chemical evolution of levitated particles: A study on the evaporation of multicomponent organic aerosol. Anal. Chem. 2021, 93, 12472–12479.

[6]

Wang, X. D.; Zhang, X. R.; Huang, D. X.; Zhao, T. Y.; Zhao, L. L.; Fang, X. K.; Yang, C. H.; Chen, G. Y. High-sensitivity sensing of divalent copper ions at the single upconversion nanoparticle level. Anal. Chem. 2021, 93, 11686–11691.

[7]

Liu, C.; Zheng, X. C.; Dai, T. T.; Wang, H. L.; Chen, X.; Chen, B.; Sun, T. Y.; Wang, F.; Chu, S.; Rao, J. H. Reversibly photoswitching upconversion nanoparticles for super-sensitive photoacoustic molecular imaging. Angew. Chem., Int. Ed. 2022, 61, e202116802.

[8]

Swearer, D. F.; Fischer, S.; Angell, D. K.; Siefe, C.; Alivisatos, A. P.; Chu, S.; Dionne, J. A. Single particle cathodoluminescence spectroscopy with sub-20 nm, electron-stable phosphors. ACS Photonics 2021, 8, 1539–1547.

[9]

Purohit, P.; Fortes, F. J.; Laserna, J. J. Spectral identification in the attogram regime through laser-induced emission of single optically trapped nanoparticles in air. Angew. Chem., Int. Ed. 2017, 56, 14178–14182.

[10]

Purohit, P.; Fortes, F. J.; Laserna, J. J. Subfemtogram simultaneous elemental detection in multicomponent nanomatrices using laser-induced plasma emission spectroscopy within atmospheric pressure optical traps. Anal. Chem. 2019, 91, 7444–7449.

[11]

Purohit, P.; Fortes, F. J.; Laserna, J. J. Optical trapping as a morphologically selective tool for in situ LIBS elemental characterization of single nanoparticles generated by laser ablation of bulk targets in air. Anal. Chem. 2021, 93, 2635–2643.

[12]

Jolivet, L.; Catita, L.; Delpoux, O.; Lienemann, C. P.; Sorbier, L.; Motto-Ros, V. Direct multi-elemental imaging of freshly impregnated catalyst by laser-induced breakdown spectroscopy. J. Catal. 2021, 401, 183–187.

[13]

Kunjachan, S.; Detappe, A.; Kumar, R.; Ireland, T.; Cameron, L.; Biancur, D. E.; Motto-Ros, V.; Sancey, L.; Sridhar, S.; Makrigiorgos, G. M. et al. Nanoparticle mediated tumor vascular disruption: A novel strategy in radiation therapy. Nano Lett. 2015, 15, 7488–7496.

[14]

Sancey, L.; Kotb, S.; Truillet, C.; Appaix, F.; Marais, A.; Thomas, E.; van der Sanden, B.; Klein, J. P.; Laurent, B.; Cottier, M. et al. Long-term in vivo clearance of gadolinium-based AGuIX nanoparticles and their biocompatibility after systemic injection. ACS Nano 2015, 9, 2477–2488.

[15]

Nardecchia, A.; de Juan, A.; Motto-Ros, V.; Gaft, M.; Duponchel, L. Data fusion of LIBS and PIL hyperspectral imaging: Understanding the luminescence phenomenon of a complex mineral sample. Anal. Chim. Acta 2022, 1192, 339368.

[16]

Negre, E.; Motto-Ros, V.; Pelascini, F.; Yu, J. Classification of plastic materials by imaging laser-induced ablation plumes. Spectrochim. Acta Part B At. Spectrosc. 2016, 122, 132–141.

[17]

Vogt, D. S.; Schröder, S.; Frohmann, S.; Hansen, P. B.; Seel, F.; Gensch, M.; Hübers, H. W. Spatiotemporal characterization of the laser-induced plasma plume in simulated Martian conditions. Spectrochim. Acta Part B At. Spectrosc. 2022, 187, 106326.

[18]

Hohreiter, V.; Hahn, D. W. Plasma–particle interactions in a laser-induced plasma: Implications for laser-induced breakdown spectroscopy. Anal. Chem. 2006, 78, 1509–1514.

[19]

Purohit, P.; Fortes, F. J.; Laserna, J. J. Atomization efficiency and photon yield in laser-induced breakdown spectroscopy analysis of single nanoparticles in an optical trap. Spectrochim. Acta Part B At. Spectrosc. 2017, 130, 75–81.

[20]

Fortes, F. J.; Purohit, P.; Laserna, J. J. Energy transfer mechanisms in laser-induced plasmas: Variation of physical traits mediated by the presence of single optically-trapped nanoparticulate material. Spectrochim. Acta Part B At. Spectrosc. 2021, 180, 106193.

[21]

Harilal, S. S.; Issac, R. C.; Bindhu, C. V.; Gopinath, P.; Nampoori, V. P. N.; Vallabhan, C. P. G. Time resolved study of CN band emission from plasma generated by laser irradiation of graphite. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1997, 53, 1527–1536.

[22]

Harilal, S. S.; Bindhu, C. V.; Nampoori, V. P. N.; Vallabhan, C. P. G. Influence of ambient gas on the temperature and density of laser produced carbon plasma. Appl. Phys. Lett. 1998, 72, 167–169.

[23]

Schoolcraft, T. A.; Constable, G. S.; Zhigilei, L. V.; Garrison, B. J. Molecular dynamics simulation of the laser disintegration of aerosol particles. Anal. Chem. 2000, 72, 5143–5150.

[24]

Zhigilei, L. V.; Garrison, B. J. Computer simulation study of damage and ablation of submicron particles from short-pulse laser irradiation. Appl. Surf. Sci. 1998, 127–129, 142–150.

[25]

Fortes, F. J.; Fernández-Bravo, A.; Laserna, J. J. Chemical characterization of single micro- and nano-particles by optical catapulting-optical trapping-laser-induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2014, 100, 78–85.

[26]

Hahn, D. W.; Omenetto, N. Laser-induced breakdown spectroscopy (LIBS), Part I: Review of basic diagnostics and plasma-particle interactions: Still-challenging issues within the analytical plasma community. Appl. Spectrosc. 2010, 64, 335A–336A.

[27]

Hahn, D. W.; Omenetto, N. Laser-induced breakdown spectroscopy (LIBS), Part II: Review of instrumental and methodological approaches to material analysis and applications to different fields. Appl. Spectros. 2012, 66, 347–419.

[28]

Purohit, P.; Samadi, A.; Bendix, P. M.; Laserna, J. J.; Oddershede, L. B. Optical trapping reveals differences in dielectric and optical properties of copper nanoparticles compared to their oxides and ferrites. Sci. Rep. 2020, 10, 1198.

[29]

Samadi, A.; Klingberg, H.; Jauffred, L.; Kjær, A.; Bendix, P. M.; Oddershede, L. B. Platinum nanoparticles: A non-toxic, effective and thermally stable alternative plasmonic material for cancer therapy and bioengineering. Nanoscale 2018, 10, 9097–9107.

[30]

Samadi, A.; Bendix, P. M.; Oddershede, L. B. Optical manipulation of individual strongly absorbing platinum nanoparticles. Nanoscale 2017, 9, 18449–18455.

[31]

Hansen, P. M.; Bhatia, V. K.; Harrit, N.; Oddershede, L. Expanding the optical trapping range of gold nanoparticles. Nano Lett. 2005, 5, 1937–1942.

[32]

Righini, M.; Volpe, G.; Girard, C.; Petrov, D.; Quidant, R. Surface Plasmon optical tweezers: Tunable optical manipulation in the femtonewton range. Phys. Rev. Lett. 2008, 100, 186804.

[33]

Juan, M. L.; Righini, M.; Quidant, R. Plasmon nano-optical tweezers. Nat. Photonics 2011, 5, 349–356.

[34]

Dell’Aglio, M.; Alrifai, R.; De Giacomo, A. Nanoparticle enhanced laser induced breakdown spectroscopy (NELIBS), a first review. Spectrochim. Acta Part B At. Spectrosc. 2018, 148, 105–112.

[35]

Abràmoff, M. D.; Magalhães, P. J.; Ram, S. J. Image processing with ImageJ. Biophotonics Int. 2007, 11, 36–42.

[36]

Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W. NIH image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675.

Nano Research
Pages 7470-7480
Cite this article:
Purohit P, Fortes FJ, Laserna J. Diffusion dynamics and characterization of attogram masses in optically trapped single nanoparticles using laser-induced plasma imaging. Nano Research, 2023, 16(5): 7470-7480. https://doi.org/10.1007/s12274-022-5355-3
Topics:

3578

Views

79

Downloads

6

Crossref

6

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 13 September 2022
Revised: 23 November 2022
Accepted: 24 November 2022
Published: 22 February 2023
© The author(s) 2022

Copyright: © 2022 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.

Return