AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Near-infrared light-driven multifunctional metal ion (Cu2+)-loaded polydopamine nanomotors for therapeutic angiogenesis in critical limb ischemia

Liang Gui1,§Juju Huang2,§Yi Xing3,§Yongjun Li4Junjie Zou1Yingwei Zhu2Xiao Liang5Xiwei Zhang1( )Qiang Xu6,7( )Xin Du3( )
Department of Vascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
Department of Gastroenterology, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi 214002, China
Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology, Beijing 100083, China
Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
Department of Anesthesiology, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi 214002, China
Department of Intervention, Wujin Hospital Affiliated to Jiangsu University, Wujin Clinical College of Xuzhou Medical University, Changzhou 213002, China
Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China

§ Liang Gui, Juju Huang, and Yi Xing contributed equally to this work.

Show Author Information

Graphical Abstract

Near-infrared light-driven Cu2+-loaded polydopamine nanomotors have been developed for promoting angiogenesis along with ischemic micro-environment amelioration.

Abstract

Most of the current nanomedicine-based treatments for critical limb ischemia (CLI) only aim at promoting angiogenesis, ignoring the negative influence on the therapeutic effects caused by the complex pathological micro-environment of ischemic tissue. Herein, near-infrared (NIR) light-driven metal ion (Cu2+)-loaded polydopamine (PDA) nanomotors (JMPN@Cu2+) is designed and prepared. Due to the good antioxidant and anti-inflammatory activities of PDA, JMPN@Cu2+ exhibits excellent biocompatibility and significantly improves the ischemic micro-environment. Additionally, based on superior photothermal conversion effect and jellyfish-like structure, the nanomotors are quickly propelled under NIR laser with low energy intensity to acquire the ability of movement and facilitate intracellular uptake of JMPN@Cu2+ by endothelial cells, resulting in the enhanced pro-angiogenic effect of Cu2+. Moreover, in vivo experimental findings show that JMPN@Cu2+ combined with NIR irradiation can successfully accelerate blood flow recovery and improve muscle repair. Taking these results together, this kind of nanomotor can promote angiogenesis along with ischemic micro-environment amelioration, holding great potential applications for the treatment of limb ischemia.

Electronic Supplementary Material

Video
12274_2022_5356_MOESM2_ESM.mp4
Download File(s)
12274_2022_5356_MOESM1_ESM.pdf (497.3 KB)

References

[1]

Shishehbor, M. H.; White, C. J.; Gray, B. H.; Menard, M. T.; Lookstein, R.; Rosenfield, K.; Jaff, M. R. Critical limb ischemia: An expert statement. J. Am. Coll. Cardiol. 2016, 68, 2002–2015.

[2]

Abdulhannan, P.; Russell, D. A.; Homer-Vanniasinkam, S. Peripheral arterial disease: A literature review. Br. Med. Bull. 2012, 104, 21–39.

[3]

BASIL Trial Participants. Bypass versus angioplasty in severe ischaemia of the leg (BASIL): Multicentre, randomised controlled trial. Lancet 2005, 366, 1925–1934.

[4]

Bradbury, A. W.; Adam, D. J.; Bell, J.; Forbes, J. F.; Fowkes, F. G. R.; Gillespie, I.; Ruckley, C. V.; Raab, G. M. Bypass versus angioplasty in severe ischaemia of the leg (BASIL) trial: Analysis of amputation free and overall survival by treatment received. J. Vasc. Surg. 2010, 51, 18S–31S.

[5]

Fadini, G. P.; Agostini, C.; Avogaro, A. Autologous stem cell therapy for peripheral arterial disease: Meta-analysis and systematic review of the literature. Atherosclerosis 2010, 209, 10–17.

[6]

Idei, N.; Soga, J.; Hata, T.; Fujii, Y.; Fujimura, N.; Mikami, S.; Maruhashi, T.; Nishioka, K.; Hidaka, T.; Kihara, Y. et al. Autologous bone-marrow mononuclear cell implantation reduces long-term major amputation risk in patients with critical limb ischemia: A comparison of atherosclerotic peripheral arterial disease and buerger disease. Circ. Cardiovasc. Interv. 2011, 4, 15–25.

[7]

Tongers, J.; Roncalli, J. G.; Losordo, D. W. Therapeutic angiogenesis for critical limb ischemia: Microvascular therapies coming of age. Circulation 2008, 118, 9–16.

[8]

Forster, R.; Liew, A.; Bhattacharya, V.; Shaw, J.; Stansby, G. Gene therapy for peripheral arterial disease. Cochrane Database Syst. Rev. 2018, 10, CD012058.

[9]

Rigato, M.; Monami, M.; Fadini, G. P. Autologous cell therapy for peripheral arterial disease: Systematic review and meta-analysis of randomized, nonrandomized, and noncontrolled studies. Circ. Res. 2017, 120, 1326–1340.

[10]

Signorelli, S. S.; Scuto, S.; Marino, E.; Xourafa, A.; Gaudio, A. Oxidative stress in peripheral arterial disease (PAD) mechanism and biomarkers. Antioxidants 2019, 8, 367.

[11]

Koutakis, P.; Ismaeel, A.; Farmer, P.; Purcell, S.; Smith, R. S.; Eidson, J. L.; Bohannon, W. T. Oxidative stress and antioxidant treatment in patients with peripheral artery disease. Physiol. Rep. 2018, 6, e13650.

[12]

Ni, L.; Li, T. J.; Liu, B.; Song, X. T.; Yang, G. H.; Wang, L. F.; Miao, S. Y.; Liu, C. W. The protective effect of Bcl-xl overexpression against oxidative stress-induced vascular endothelial cell injury and the role of the Akt/eNOS pathway. Int. J. Mol. Sci. 2013, 14, 22149–22162.

[13]

Mandinov, L.; Mandinova, A.; Kyurkchiev, S.; Kyurkchiev, D.; Kehayov, I.; Kolev, V.; Soldi, R.; Bagala, C.; de Muinck, E. D.; Lindner, V. et al. Copper chelation represses the vascular response to injury. Proc. Natl. Acad. Sci. USA 2003, 100, 6700–6705.

[14]

Dioufa, N.; Schally, A. V.; Chatzistamou, I.; Moustou, E.; Block, N. L.; Owens, G. K.; Papavassiliou, A. G.; Kiaris, H. Acceleration of wound healing by growth hormone-releasing hormone and its agonists. Proc. Natl. Acad. Sci. USA 2010, 107, 18611–18615.

[15]

Hoppe, A.; Güldal, N. S.; Boccaccini, A. R. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 2011, 32, 2757–2774.

[16]

Chandrasekar, V.; Singh, A. V.; Maharjan, R. S.; Dakua, S. P.; Balakrishnan, S.; Dash, S.; Laux, P.; Luch, A.; Singh, S.; Pradhan, M. Perspectives on the technological aspects and biomedical applications of virus-like particles/nanoparticles in reproductive biology: Insights on the medicinal and toxicological outlook. Adv. NanoBiomed Res. 2022, 2, 2200010.

[17]

Xu, X. X.; Ding, M. H.; Zhang, J. X.; Zheng, W.; Li, L.; Zheng, Y. F. A novel copper/polydimethiylsiloxane nanocomposite for copper-containing intrauterine contraceptive devices. J. Biomed. Mater. Res. B Appl. Biomater. 2013, 101, 1428–1436.

[18]

Hanagata, N.; Zhuang, F.; Connolly, S.; Li, J.; Ogawa, N.; Xu, M. S. Molecular responses of human lung epithelial cells to the toxicity of copper oxide nanoparticles inferred from whole genome expression analysis. ACS Nano 2011, 5, 9326–9338.

[19]

Jomova, K.; Valko, M. Advances in metal-induced oxidative stress and human disease. Toxicology 2011, 283, 65–87.

[20]

Dong, Z. L.; Gong, H.; Gao, M.; Zhu, W. W.; Sun, X. Q.; Feng, L. Z.; Fu, T. T.; Li, Y. G.; Liu, Z. Polydopamine nanoparticles as a versatile molecular loading platform to enable imaging-guided cancer combination therapy. Theranostics 2016, 6, 1031–1042.

[21]

Zhao, H.; Chao, Y.; Liu, J. J.; Huang, J.; Pan, J.; Guo, W. L.; Wu, J. Z.; Sheng, M.; Yang, K.; Wang, J. et al. Polydopamine coated single-walled carbon nanotubes as a versatile platform with radionuclide labeling for multimodal tumor imaging and therapy. Theranostics 2016, 6, 1833–1843.

[22]

Liu, Y. L.; Ai, K. L.; Lu, L. H. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 2014, 114, 5057–5115.

[23]

Lin, L. S.; Cong, Z. X.; Cao, J. B.; Ke, K. M.; Peng, Q. L.; Gao, J. H.; Yang, H. H.; Liu, G.; Chen, X. Y. Multifunctional Fe3O4@polydopamine core–shell nanocomposites for intracellular mRNA detection and imaging-guided photothermal therapy. ACS Nano 2014, 8, 3876–3883.

[24]

Chen, Y.; Ai, K. L.; Liu, J. H.; Ren, X. Y.; Jiang, C. H.; Lu, L. H. Polydopamine-based coordination nanocomplex for T1/T2 dual mode magnetic resonance imaging-guided chemo-photothermal synergistic therapy. Biomaterials 2016, 77, 198–206.

[25]

Xing, Y. X.; Zhang, J. X.; Chen, F.; Liu, J. J.; Cai, K. Y. Mesoporous polydopamine nanoparticles with co-delivery function for overcoming multidrug resistance via synergistic chemo-photothermal therapy. Nanoscale 2017, 9, 8781–8790.

[26]

Zeng, Y. Y.; Zhang, D.; Wu, M.; Liu, Y.; Zhang, X.; Li, L.; Li, Z.; Han, X.; Wei, X. Y.; Liu, X. L. Lipid-AuNPs@PDA nanohybrid for MRI/CT imaging and photothermal therapy of hepatocellular carcinoma. ACS Appl. Mater. Interfaces 2014, 6, 14266–14277.

[27]

Dai, Y.; Yang, D. P.; Yu, D. P.; Cao, C.; Wang, Q. H.; Xie, S. H.; Shen, L.; Feng, W.; Li, F. Y. Mussel-inspired polydopamine-coated lanthanide nanoparticles for NIR-Ⅱ/CT dual imaging and photothermal therapy. ACS Appl. Mater. Interfaces 2017, 9, 26674–26683.

[28]

Yao, S.; Li, X. Q.; Liu, J. X.; Sun, Y. Q.; Wang, Z. H.; Jiang, Y. Y. Maximized nanodrug-loaded mesenchymal stem cells by a dual drug-loaded mode for the systemic treatment of metastatic lung cancer. Drug Deliv. 2017, 24, 1372–1383.

[29]

Ju, K. Y.; Lee, Y.; Lee, S.; Park, S. B.; Lee, J. K. Bioinspired polymerization of dopamine to generate melanin-like nanoparticles having an excellent free-radical-scavenging property. Biomacromolecules 2011, 12, 625–632.

[30]

Li, T.; Chen, T. T.; Chen, H.; Wang, Q.; Liu, Z. Y.; Fang, L. Y.; Wan, M. M.; Mao, C.; Shen, J. Engineered platelet-based micro/nanomotors for cancer therapy. Small 2021, 17, 2104912.

[31]

Blanco, E.; Shen, H. F.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951.

[32]

Xu, T. L.; Gao, W.; Xu, L. P.; Zhang, X. J.; Wang, S. T. Fuel-free synthetic micro-/nanomachines. Adv. Mater. 2017, 29, 1603250.

[33]

Xing, Y.; Zhou, M. Y.; Xu, T. L.; Tang, S. S.; Fu, Y.; Du, X.; Su, L.; Wen, Y. Q.; Zhang, X. J.; Ma, T. Y. Core@satellite Janus nanomotors with pH-responsive multi-phoretic propulsion. Angew. Chem., Int. Ed. 2020, 59, 14368–14372.

[34]

Gao, C. Y.; Wang, Y.; Ye, Z. H.; Lin, Z. H.; Ma, X.; He, Q. Biomedical micro-/nanomotors: From overcoming biological barriers to in vivo imaging. Adv. Mater. 2021, 33, 2000512.

[35]

Shao, J. X.; Abdelghani, M.; Shen, G. Z.; Cao, S. P.; Williams, D. S.; van Hest, J. C. M. Erythrocyte membrane modified Janus polymeric motors for thrombus therapy. ACS Nano 2018, 12, 4877–4885.

[36]

Wan, M. M.; Chen, H.; Wang, Q.; Niu, Q.; Xu, P.; Yu, Y. Q.; Zhu, T. Y.; Mao, C.; Shen, J. Bio-inspired nitric-oxide-driven nanomotor. Nat. Commun. 2019, 10, 966.

[37]

Xuan, M. J.; Shao, J. X.; Gao, C. Y.; Wang, W.; Dai, L. R.; He, Q. Self-propelled nanomotors for thermomechanically percolating cell membranes. Angew. Chem., Int. Ed. 2018, 57, 12463–12467.

[38]

Wang, W.; Wu, Z. G.; Lin, X. K.; Si, T. Y.; He, Q. Gold-nanoshell-functionalized polymer nanoswimmer for photomechanical poration of single-cell membrane. J. Am. Chem. Soc. 2019, 141, 6601–6608.

[39]

Zhou, D. K.; Li, Y. C.; Xu, P. T.; Ren, L. Q.; Zhang, G. Y.; Mallouk, T. E.; Li, L. Q. Visible-light driven Si-Au micromotors in water and organic solvents. Nanoscale 2017, 9, 11434–11438.

[40]

Dreyfus, R.; Baudry, J.; Roper, M. L.; Fermigier, M.; Stone, H. A.; Bibette, J. Microscopic artificial swimmers. Nature 2005, 437, 862–865.

[41]

Shin, S. R.; Migliori, B.; Miccoli, B.; Li, Y. C.; Mostafalu, P.; Seo, J.; Mandla, S.; Enrico, A.; Antona, S.; Sabarish, R. et al. Electrically driven microengineered bioinspired soft robots. Adv. Mater. 2018, 30, 1704189.

[42]

Yan, M.; Liu, T. Y.; Li, X. F.; Zhou, S.; Zeng, H.; Liang, Q. R.; Liang, K.; Wei, X. B.; Wang, J. Q.; Gu, Z. et al. Soft patch interface-oriented superassembly of complex hollow nanoarchitectures for smart dual-responsive nanospacecrafts. J. Am. Chem. Soc. 2022, 144, 7778–7789.

[43]

Li, J.; Liu, X. M.; Tan, L.; Cui, Z. D.; Yang, X. J.; Liang, Y. Q.; Li, Z. Y.; Zhu, S. L.; Zheng, Y. F.; Yeung, K. W. K. et al. Zinc-doped Prussian blue enhances photothermal clearance of Staphylococcus aureus and promotes tissue repair in infected wounds. Nat. Commun. 2019, 10, 4490.

[44]

Weissleder, R. A clearer vision for in vivo imaging. Nat. Biotechnol. 2001, 19, 316–317.

[45]

Liu, T. Y.; Xie, L.; Zeng, J.; Yan, M.; Qiu, B. L.; Wang, X. Y.; Zhou, S.; Zhang, X.; Zeng, H.; Liang, Q. R. et al. Interfacial superassembly of light-responsive mechanism-switchable nanomotors with tunable mobility and directionality. ACS Appl. Mater. Interfaces 2022, 14, 15517–15528.

[46]

Tian, Y.; Younis, M. R.; Tang, Y. X.; Liao, X.; He, G.; Wang, S. J.; Teng, Z. G.; Huang, P.; Zhang, L. J.; Lu, G. M. Dye-loaded mesoporous polydopamine nanoparticles for multimodal tumor theranostics with enhanced immunogenic cell death. J. Nanobiotechnol. 2021, 19, 365.

[47]

He, Y. C.; Cong, C.; Li, X. L.; Zhu, R. Y.; Li, A. S.; Zhao, S. X.; Li, X. W.; Cheng, X.; Yang, M. X.; Gao, D. W. Nano-drug system based on hierarchical drug release for deep localized/systematic cascade tumor therapy stimulating antitumor immune responses. Theranostics 2019, 9, 2897–2909.

[48]

Guan, B. Y.; Yu, L.; Lou, X. W. Formation of asymmetric bowl-like mesoporous particles via emulsion-induced interface anisotropic assembly. J. Am. Chem. Soc. 2016, 138, 11306–11311.

[49]

Gao, C. B.; Zheng, H. Q.; Xing, L.; Shu, M. H.; Che, S. N. Designable coordination bonding in mesopores as a pH-responsive release system. Chem. Mater. 2010, 22, 5437–5444.

[50]

Kim, C. W.; Lee, H. M.; Lee, T. H.; Kang, C.; Kleinman, H. K.; Gho, Y. S. Extracellular membrane vesicles from tumor cells promote angiogenesis via sphingomyelin. Cancer Res. 2002, 62, 6312–6317.

[51]

Lee, S. J.; Sohn, Y. D.; Andukuri, A.; Kim, S.; Byun, J.; Han, J. W.; Park, I. H.; Jun, H. W.; Yoon, Y. S. Enhanced therapeutic and long-term dynamic vascularization effects of human pluripotent stem cell-derived endothelial cells encapsulated in a nanomatrix Gel. Circulation 2017, 136, 1939–1954.

[52]

Wang, Z.; Xie, Y. J.; Li, Y. W.; Huang, Y. R.; Parent, L. R.; Ditri, T.; Zang, N. Z.; Rinehart, J. D.; Gianneschi, N. C. Tunable, metal-loaded polydopamine nanoparticles analyzed by magnetometry. Chem. Mater. 2017, 29, 8195–8201.

[53]

Xuan, M. J.; Wu, Z. G.; Shao, J. X.; Dai, L. R.; Si, T. Y.; He, Q. Near infrared light-powered Janus mesoporous silica nanoparticle motors. J. Am. Chem. Soc. 2016, 138, 6492–6497.

[54]

Dunderdale, G.; Ebbens, S.; Fairclough, P.; Howse, J. Importance of particle tracking and calculating the mean-squared displacement in distinguishing nanopropulsion from other processes. Langmuir 2012, 28, 10997–11006.

[55]

Patiño, T.; Arqué, X.; Mestre, R.; Palacios, L.; Sánchez, S. Fundamental aspects of enzyme-powered micro- and nanoswimmers. Acc. Chem. Res. 2018, 51, 2662–2671.

[56]

Patiño, T.; Feiner-Gracia, N.; Arqué, X.; Miguel-López, A.; Jannasch, A.; Stumpp, T.; Schäffer, E.; Albertazzi, L.; Sánchez, S. Influence of enzyme quantity and distribution on the self-propulsion of non-Janus urease-powered micromotors. J. Am. Chem. Soc. 2018, 140, 7896–7903.

[57]

Li, T. C.; Kheifets, S.; Medellin, D.; Raizen, M. G. Measurement of the instantaneous velocity of a Brownian particle. Science 2010, 328, 1673–1675.

[58]

Bao, H. M.; Lv, F.; Liu, T. J. A pro-angiogenic degradable Mg-poly(lactic-co-glycolic acid) implant combined with rhbFGF in a rat limb ischemia model. Acta Biomater. 2017, 64, 279–289.

[59]

Jiao, X. Y.; Wang, Z. M.; Xiu, J.; Dai, W. H.; Zhao, L.; Xu, T. L.; Du, X.; Wen, Y. Q.; Zhang, X. J. NIR powered Janus nanocarrier for deep tumor penetration. Appl. Mater. Today 2020, 18, 100504.

[60]

Xing, Y.; Zhou, M. Y.; Du, X.; Li, X. Y.; Li, J. Q.; Xu, T. L.; Zhang, X. J. Hollow mesoporous carbon@Pt Janus nanomotors with dual response of H2O2 and near-infrared light for active cargo delivery. Appl. Mater. Today 2019, 17, 85–91.

[61]

Ding, Y. H.; Yang, Z. L.; Bi, C. W. C.; Yang, M.; Zhang, J. C.; Xu, S. L.; Lu, X.; Huang, N.; Huang, P. B.; Leng, Y. Modulation of protein adsorption, vascular cell selectivity and platelet adhesion by mussel-inspired surface functionalization. J. Mater. Chem. B 2014, 2, 3819–3829.

[62]

Yang, Z.; Huang, R.; Zheng, B.; Guo, W.; Li, C.; He, W.; Wei, Y.; Du, Y.; Wang, H.; Wu, D. et al. Highly Stretchable, Adhesive, Biocompatible, and Antibacterial Hydrogel Dressings for Wound Healing. Adv. Sci. 2021, 8, 2003627.

[63]

Lee, B. P.; Messersmith, P. B.; Israelachvili, J. N.; Waite, J. H. Mussel-inspired adhesives and coatings. Annu. Rev. Mater. Res. 2011, 41, 99–132.

[64]

Ismaeel, A.; Franco, M. E.; Lavado, R.; Papoutsi, E.; Casale, G. P.; Fuglestad, M.; Mietus, C. J.; Haynatzki, G. R.; Smith, R. S.; Bohannon, W. T. et al. Altered metabolomic profile in patients with peripheral artery disease. J. Clin. Med. 2019, 8, 1463.

[65]

Dash, B. C.; Thomas, D.; Monaghan, M.; Carroll, O.; Chen, X. Z.; Woodhouse, K.; O'Brien, T.; Pandit, A. An injectable elastin-based gene delivery platform for dose-dependent modulation of angiogenesis and inflammation for critical limb ischemia. Biomaterials 2015, 65, 126–139.

[66]
Gui, L.; Chen, Y. L.; Diao, Y. P.; Chen, Z. G.; Duan, J. W.; Liang, X. Y.; Li, H. Y.; Liu, K. J.; Miao, Y. Q.; Gao, Q. et al. ROS-responsive nanoparticle-mediated delivery of CYP2J2 gene for therapeutic angiogenesis in severe hindlimb ischemia. Mater. Today Bio 2022, 13, 100192.
[67]
Chen, Z. G.; Duan, J. W.; Diao, Y. P.; Chen, Y. L.; Liang, X. Y.; Li, H. Y.; Miao, Y. Q.; Gao, Q.; Gui, L.; Wang, X. L. et al. ROS-responsive capsules engineered from EGCG-zinc networks improve therapeutic angiogenesis in mouse limb ischemia. Bioact. Mater. 2021, 6, 1–11.
[68]

Bai, B. B.; Gu, C. Y.; Lu, X. H.; Ge, X. Y.; Yang, J. L.; Wang, C. F.; Gu, Y. C.; Deng, A. D.; Guo, Y. H.; Feng, X. M. et al. Polydopamine functionalized mesoporous silica as ROS-sensitive drug delivery vehicles for periodontitis treatment by modulating macrophage polarization. Nano Res. 2021, 14, 4577–4583.

[69]

Duan, J. W.; Chen, Z. G.; Liang, X. Y.; Chen, Y. L.; Li, H. Y.; Tian, X. X.; Zhang, M. M.; Wang, X. L.; Sun, H. F.; Kong, D. L. et al. Construction and application of therapeutic metal-polyphenol capsule for peripheral artery disease. Biomaterials 2020, 255, 120199.

[70]

Yao, J.; Cheng, Y.; Zhou, M.; Zhao, S.; Lin, S. C.; Wang, X. Y.; Wu, J. J. X.; Li, S. R.; Wei, H. ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation. Chem. Sci. 2018, 9, 2927–2933.

[71]

Bao, X. F.; Zhao, J. H.; Sun, J.; Hu, M.; Yang, X. R. Polydopamine nanoparticles as efficient scavengers for reactive oxygen species in periodontal disease. ACS Nano 2018, 12, 8882–8892.

[72]

Zhao, H.; Zeng, Z. D.; Liu, L.; Chen, J. W.; Zhou, H. T.; Huang, L. L.; Huang, J.; Xu, H.; Xu, Y. Y.; Chen, Z. R. et al. Polydopamine nanoparticles for the treatment of acute inflammation-induced injury. Nanoscale 2018, 10, 6981–6991.

[73]

Yin, K. J.; Olsen, K.; Hamblin, M.; Zhang, J. F.; Schwendeman, S. P.; Chen, Y. E. Vascular endothelial cell-specific microRNA-15a inhibits angiogenesis in hindlimb ischemia. J. Biol. Chem. 2012, 287, 27055–27064.

[74]

Kang, S. W.; Lim, H. W.; Seo, S. W.; Jeon, O.; Lee, M.; Kim, B. S. Nanosphere-mediated delivery of vascular endothelial growth factor gene for therapeutic angiogenesis in mouse ischemic limbs. Biomaterials 2008, 29, 1109–1117.

[75]
Cho, B. R.; Ryu, D. R.; Lee, K. S.; Lee, D. K.; Bae, S.; Kang, D. G.; Ke, Q. G.; Singh, S. S.; Ha, K. S.; Kwon, Y. G. et al. p-Hydroxybenzyl alcohol-containing biodegradable nanoparticle improves functional blood flow through angiogenesis in a mouse model of hindlimb ischemia. Biomaterials 2015, 53, 679–687.
[76]

Veikkola, T.; Alitalo, K. VEGFs, receptors and angiogenesis. Semin. Cancer Biol. 1999, 9, 211–220.

[77]

Yang, F.; Cho, S. W.; Son, S. M.; Bogatyrev, S. R.; Singh, D.; Green, J. J.; Mei, Y.; Park, S.; Bhang, S. H.; Kim, B. S. et al. Genetic engineering of human stem cells for enhanced angiogenesis using biodegradable polymeric nanoparticles. Proc. Natl. Acad. Sci. USA 2010, 107, 3317–3322.

[78]

Kim, J.; Cao, L.; Shvartsman, D.; Silva, E. A.; Mooney, D. J. Targeted delivery of nanoparticles to ischemic muscle for imaging and therapeutic angiogenesis. Nano Lett. 2011, 11, 694–700.

[79]

Weiss, D. J.; Casale, G. P.; Koutakis, P.; Nella, A. A.; Swanson, S. A.; Zhu, Z.; Miserlis, D.; Johanning, J. M.; Pipinos, I. I. Oxidative damage and myofiber degeneration in the gastrocnemius of patients with peripheral arterial disease. J. Transl. Med. 2013, 11, 230.

[80]

Barralet, J.; Gbureck, U.; Habibovic, P.; Vorndran, E.; Gerard, C.; Doillon, C. J. Angiogenesis in calcium phosphate scaffolds by inorganic copper ion release. Tissue Eng. Part A 2009, 15, 1601–1609.

Nano Research
Pages 5108-5120
Cite this article:
Gui L, Huang J, Xing Y, et al. Near-infrared light-driven multifunctional metal ion (Cu2+)-loaded polydopamine nanomotors for therapeutic angiogenesis in critical limb ischemia. Nano Research, 2023, 16(4): 5108-5120. https://doi.org/10.1007/s12274-022-5356-2
Topics:

4057

Views

5

Crossref

7

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 20 September 2022
Revised: 22 November 2022
Accepted: 24 November 2022
Published: 21 January 2023
© Tsinghua University Press 2022
Return