Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Most of the current nanomedicine-based treatments for critical limb ischemia (CLI) only aim at promoting angiogenesis, ignoring the negative influence on the therapeutic effects caused by the complex pathological micro-environment of ischemic tissue. Herein, near-infrared (NIR) light-driven metal ion (Cu2+)-loaded polydopamine (PDA) nanomotors (JMPN@Cu2+) is designed and prepared. Due to the good antioxidant and anti-inflammatory activities of PDA, JMPN@Cu2+ exhibits excellent biocompatibility and significantly improves the ischemic micro-environment. Additionally, based on superior photothermal conversion effect and jellyfish-like structure, the nanomotors are quickly propelled under NIR laser with low energy intensity to acquire the ability of movement and facilitate intracellular uptake of JMPN@Cu2+ by endothelial cells, resulting in the enhanced pro-angiogenic effect of Cu2+. Moreover, in vivo experimental findings show that JMPN@Cu2+ combined with NIR irradiation can successfully accelerate blood flow recovery and improve muscle repair. Taking these results together, this kind of nanomotor can promote angiogenesis along with ischemic micro-environment amelioration, holding great potential applications for the treatment of limb ischemia.
Shishehbor, M. H.; White, C. J.; Gray, B. H.; Menard, M. T.; Lookstein, R.; Rosenfield, K.; Jaff, M. R. Critical limb ischemia: An expert statement. J. Am. Coll. Cardiol. 2016, 68, 2002–2015.
Abdulhannan, P.; Russell, D. A.; Homer-Vanniasinkam, S. Peripheral arterial disease: A literature review. Br. Med. Bull. 2012, 104, 21–39.
BASIL Trial Participants. Bypass versus angioplasty in severe ischaemia of the leg (BASIL): Multicentre, randomised controlled trial. Lancet 2005, 366, 1925–1934.
Bradbury, A. W.; Adam, D. J.; Bell, J.; Forbes, J. F.; Fowkes, F. G. R.; Gillespie, I.; Ruckley, C. V.; Raab, G. M. Bypass versus angioplasty in severe ischaemia of the leg (BASIL) trial: Analysis of amputation free and overall survival by treatment received. J. Vasc. Surg. 2010, 51, 18S–31S.
Fadini, G. P.; Agostini, C.; Avogaro, A. Autologous stem cell therapy for peripheral arterial disease: Meta-analysis and systematic review of the literature. Atherosclerosis 2010, 209, 10–17.
Idei, N.; Soga, J.; Hata, T.; Fujii, Y.; Fujimura, N.; Mikami, S.; Maruhashi, T.; Nishioka, K.; Hidaka, T.; Kihara, Y. et al. Autologous bone-marrow mononuclear cell implantation reduces long-term major amputation risk in patients with critical limb ischemia: A comparison of atherosclerotic peripheral arterial disease and buerger disease. Circ. Cardiovasc. Interv. 2011, 4, 15–25.
Tongers, J.; Roncalli, J. G.; Losordo, D. W. Therapeutic angiogenesis for critical limb ischemia: Microvascular therapies coming of age. Circulation 2008, 118, 9–16.
Forster, R.; Liew, A.; Bhattacharya, V.; Shaw, J.; Stansby, G. Gene therapy for peripheral arterial disease. Cochrane Database Syst. Rev. 2018, 10, CD012058.
Rigato, M.; Monami, M.; Fadini, G. P. Autologous cell therapy for peripheral arterial disease: Systematic review and meta-analysis of randomized, nonrandomized, and noncontrolled studies. Circ. Res. 2017, 120, 1326–1340.
Signorelli, S. S.; Scuto, S.; Marino, E.; Xourafa, A.; Gaudio, A. Oxidative stress in peripheral arterial disease (PAD) mechanism and biomarkers. Antioxidants 2019, 8, 367.
Koutakis, P.; Ismaeel, A.; Farmer, P.; Purcell, S.; Smith, R. S.; Eidson, J. L.; Bohannon, W. T. Oxidative stress and antioxidant treatment in patients with peripheral artery disease. Physiol. Rep. 2018, 6, e13650.
Ni, L.; Li, T. J.; Liu, B.; Song, X. T.; Yang, G. H.; Wang, L. F.; Miao, S. Y.; Liu, C. W. The protective effect of Bcl-xl overexpression against oxidative stress-induced vascular endothelial cell injury and the role of the Akt/eNOS pathway. Int. J. Mol. Sci. 2013, 14, 22149–22162.
Mandinov, L.; Mandinova, A.; Kyurkchiev, S.; Kyurkchiev, D.; Kehayov, I.; Kolev, V.; Soldi, R.; Bagala, C.; de Muinck, E. D.; Lindner, V. et al. Copper chelation represses the vascular response to injury. Proc. Natl. Acad. Sci. USA 2003, 100, 6700–6705.
Dioufa, N.; Schally, A. V.; Chatzistamou, I.; Moustou, E.; Block, N. L.; Owens, G. K.; Papavassiliou, A. G.; Kiaris, H. Acceleration of wound healing by growth hormone-releasing hormone and its agonists. Proc. Natl. Acad. Sci. USA 2010, 107, 18611–18615.
Hoppe, A.; Güldal, N. S.; Boccaccini, A. R. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 2011, 32, 2757–2774.
Chandrasekar, V.; Singh, A. V.; Maharjan, R. S.; Dakua, S. P.; Balakrishnan, S.; Dash, S.; Laux, P.; Luch, A.; Singh, S.; Pradhan, M. Perspectives on the technological aspects and biomedical applications of virus-like particles/nanoparticles in reproductive biology: Insights on the medicinal and toxicological outlook. Adv. NanoBiomed Res. 2022, 2, 2200010.
Xu, X. X.; Ding, M. H.; Zhang, J. X.; Zheng, W.; Li, L.; Zheng, Y. F. A novel copper/polydimethiylsiloxane nanocomposite for copper-containing intrauterine contraceptive devices. J. Biomed. Mater. Res. B Appl. Biomater. 2013, 101, 1428–1436.
Hanagata, N.; Zhuang, F.; Connolly, S.; Li, J.; Ogawa, N.; Xu, M. S. Molecular responses of human lung epithelial cells to the toxicity of copper oxide nanoparticles inferred from whole genome expression analysis. ACS Nano 2011, 5, 9326–9338.
Jomova, K.; Valko, M. Advances in metal-induced oxidative stress and human disease. Toxicology 2011, 283, 65–87.
Dong, Z. L.; Gong, H.; Gao, M.; Zhu, W. W.; Sun, X. Q.; Feng, L. Z.; Fu, T. T.; Li, Y. G.; Liu, Z. Polydopamine nanoparticles as a versatile molecular loading platform to enable imaging-guided cancer combination therapy. Theranostics 2016, 6, 1031–1042.
Zhao, H.; Chao, Y.; Liu, J. J.; Huang, J.; Pan, J.; Guo, W. L.; Wu, J. Z.; Sheng, M.; Yang, K.; Wang, J. et al. Polydopamine coated single-walled carbon nanotubes as a versatile platform with radionuclide labeling for multimodal tumor imaging and therapy. Theranostics 2016, 6, 1833–1843.
Liu, Y. L.; Ai, K. L.; Lu, L. H. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 2014, 114, 5057–5115.
Lin, L. S.; Cong, Z. X.; Cao, J. B.; Ke, K. M.; Peng, Q. L.; Gao, J. H.; Yang, H. H.; Liu, G.; Chen, X. Y. Multifunctional Fe3O4@polydopamine core–shell nanocomposites for intracellular mRNA detection and imaging-guided photothermal therapy. ACS Nano 2014, 8, 3876–3883.
Chen, Y.; Ai, K. L.; Liu, J. H.; Ren, X. Y.; Jiang, C. H.; Lu, L. H. Polydopamine-based coordination nanocomplex for T1/T2 dual mode magnetic resonance imaging-guided chemo-photothermal synergistic therapy. Biomaterials 2016, 77, 198–206.
Xing, Y. X.; Zhang, J. X.; Chen, F.; Liu, J. J.; Cai, K. Y. Mesoporous polydopamine nanoparticles with co-delivery function for overcoming multidrug resistance via synergistic chemo-photothermal therapy. Nanoscale 2017, 9, 8781–8790.
Zeng, Y. Y.; Zhang, D.; Wu, M.; Liu, Y.; Zhang, X.; Li, L.; Li, Z.; Han, X.; Wei, X. Y.; Liu, X. L. Lipid-AuNPs@PDA nanohybrid for MRI/CT imaging and photothermal therapy of hepatocellular carcinoma. ACS Appl. Mater. Interfaces 2014, 6, 14266–14277.
Dai, Y.; Yang, D. P.; Yu, D. P.; Cao, C.; Wang, Q. H.; Xie, S. H.; Shen, L.; Feng, W.; Li, F. Y. Mussel-inspired polydopamine-coated lanthanide nanoparticles for NIR-Ⅱ/CT dual imaging and photothermal therapy. ACS Appl. Mater. Interfaces 2017, 9, 26674–26683.
Yao, S.; Li, X. Q.; Liu, J. X.; Sun, Y. Q.; Wang, Z. H.; Jiang, Y. Y. Maximized nanodrug-loaded mesenchymal stem cells by a dual drug-loaded mode for the systemic treatment of metastatic lung cancer. Drug Deliv. 2017, 24, 1372–1383.
Ju, K. Y.; Lee, Y.; Lee, S.; Park, S. B.; Lee, J. K. Bioinspired polymerization of dopamine to generate melanin-like nanoparticles having an excellent free-radical-scavenging property. Biomacromolecules 2011, 12, 625–632.
Li, T.; Chen, T. T.; Chen, H.; Wang, Q.; Liu, Z. Y.; Fang, L. Y.; Wan, M. M.; Mao, C.; Shen, J. Engineered platelet-based micro/nanomotors for cancer therapy. Small 2021, 17, 2104912.
Blanco, E.; Shen, H. F.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951.
Xu, T. L.; Gao, W.; Xu, L. P.; Zhang, X. J.; Wang, S. T. Fuel-free synthetic micro-/nanomachines. Adv. Mater. 2017, 29, 1603250.
Xing, Y.; Zhou, M. Y.; Xu, T. L.; Tang, S. S.; Fu, Y.; Du, X.; Su, L.; Wen, Y. Q.; Zhang, X. J.; Ma, T. Y. Core@satellite Janus nanomotors with pH-responsive multi-phoretic propulsion. Angew. Chem., Int. Ed. 2020, 59, 14368–14372.
Gao, C. Y.; Wang, Y.; Ye, Z. H.; Lin, Z. H.; Ma, X.; He, Q. Biomedical micro-/nanomotors: From overcoming biological barriers to in vivo imaging. Adv. Mater. 2021, 33, 2000512.
Shao, J. X.; Abdelghani, M.; Shen, G. Z.; Cao, S. P.; Williams, D. S.; van Hest, J. C. M. Erythrocyte membrane modified Janus polymeric motors for thrombus therapy. ACS Nano 2018, 12, 4877–4885.
Wan, M. M.; Chen, H.; Wang, Q.; Niu, Q.; Xu, P.; Yu, Y. Q.; Zhu, T. Y.; Mao, C.; Shen, J. Bio-inspired nitric-oxide-driven nanomotor. Nat. Commun. 2019, 10, 966.
Xuan, M. J.; Shao, J. X.; Gao, C. Y.; Wang, W.; Dai, L. R.; He, Q. Self-propelled nanomotors for thermomechanically percolating cell membranes. Angew. Chem., Int. Ed. 2018, 57, 12463–12467.
Wang, W.; Wu, Z. G.; Lin, X. K.; Si, T. Y.; He, Q. Gold-nanoshell-functionalized polymer nanoswimmer for photomechanical poration of single-cell membrane. J. Am. Chem. Soc. 2019, 141, 6601–6608.
Zhou, D. K.; Li, Y. C.; Xu, P. T.; Ren, L. Q.; Zhang, G. Y.; Mallouk, T. E.; Li, L. Q. Visible-light driven Si-Au micromotors in water and organic solvents. Nanoscale 2017, 9, 11434–11438.
Dreyfus, R.; Baudry, J.; Roper, M. L.; Fermigier, M.; Stone, H. A.; Bibette, J. Microscopic artificial swimmers. Nature 2005, 437, 862–865.
Shin, S. R.; Migliori, B.; Miccoli, B.; Li, Y. C.; Mostafalu, P.; Seo, J.; Mandla, S.; Enrico, A.; Antona, S.; Sabarish, R. et al. Electrically driven microengineered bioinspired soft robots. Adv. Mater. 2018, 30, 1704189.
Yan, M.; Liu, T. Y.; Li, X. F.; Zhou, S.; Zeng, H.; Liang, Q. R.; Liang, K.; Wei, X. B.; Wang, J. Q.; Gu, Z. et al. Soft patch interface-oriented superassembly of complex hollow nanoarchitectures for smart dual-responsive nanospacecrafts. J. Am. Chem. Soc. 2022, 144, 7778–7789.
Li, J.; Liu, X. M.; Tan, L.; Cui, Z. D.; Yang, X. J.; Liang, Y. Q.; Li, Z. Y.; Zhu, S. L.; Zheng, Y. F.; Yeung, K. W. K. et al. Zinc-doped Prussian blue enhances photothermal clearance of Staphylococcus aureus and promotes tissue repair in infected wounds. Nat. Commun. 2019, 10, 4490.
Weissleder, R. A clearer vision for in vivo imaging. Nat. Biotechnol. 2001, 19, 316–317.
Liu, T. Y.; Xie, L.; Zeng, J.; Yan, M.; Qiu, B. L.; Wang, X. Y.; Zhou, S.; Zhang, X.; Zeng, H.; Liang, Q. R. et al. Interfacial superassembly of light-responsive mechanism-switchable nanomotors with tunable mobility and directionality. ACS Appl. Mater. Interfaces 2022, 14, 15517–15528.
Tian, Y.; Younis, M. R.; Tang, Y. X.; Liao, X.; He, G.; Wang, S. J.; Teng, Z. G.; Huang, P.; Zhang, L. J.; Lu, G. M. Dye-loaded mesoporous polydopamine nanoparticles for multimodal tumor theranostics with enhanced immunogenic cell death. J. Nanobiotechnol. 2021, 19, 365.
He, Y. C.; Cong, C.; Li, X. L.; Zhu, R. Y.; Li, A. S.; Zhao, S. X.; Li, X. W.; Cheng, X.; Yang, M. X.; Gao, D. W. Nano-drug system based on hierarchical drug release for deep localized/systematic cascade tumor therapy stimulating antitumor immune responses. Theranostics 2019, 9, 2897–2909.
Guan, B. Y.; Yu, L.; Lou, X. W. Formation of asymmetric bowl-like mesoporous particles via emulsion-induced interface anisotropic assembly. J. Am. Chem. Soc. 2016, 138, 11306–11311.
Gao, C. B.; Zheng, H. Q.; Xing, L.; Shu, M. H.; Che, S. N. Designable coordination bonding in mesopores as a pH-responsive release system. Chem. Mater. 2010, 22, 5437–5444.
Kim, C. W.; Lee, H. M.; Lee, T. H.; Kang, C.; Kleinman, H. K.; Gho, Y. S. Extracellular membrane vesicles from tumor cells promote angiogenesis via sphingomyelin. Cancer Res. 2002, 62, 6312–6317.
Lee, S. J.; Sohn, Y. D.; Andukuri, A.; Kim, S.; Byun, J.; Han, J. W.; Park, I. H.; Jun, H. W.; Yoon, Y. S. Enhanced therapeutic and long-term dynamic vascularization effects of human pluripotent stem cell-derived endothelial cells encapsulated in a nanomatrix Gel. Circulation 2017, 136, 1939–1954.
Wang, Z.; Xie, Y. J.; Li, Y. W.; Huang, Y. R.; Parent, L. R.; Ditri, T.; Zang, N. Z.; Rinehart, J. D.; Gianneschi, N. C. Tunable, metal-loaded polydopamine nanoparticles analyzed by magnetometry. Chem. Mater. 2017, 29, 8195–8201.
Xuan, M. J.; Wu, Z. G.; Shao, J. X.; Dai, L. R.; Si, T. Y.; He, Q. Near infrared light-powered Janus mesoporous silica nanoparticle motors. J. Am. Chem. Soc. 2016, 138, 6492–6497.
Dunderdale, G.; Ebbens, S.; Fairclough, P.; Howse, J. Importance of particle tracking and calculating the mean-squared displacement in distinguishing nanopropulsion from other processes. Langmuir 2012, 28, 10997–11006.
Patiño, T.; Arqué, X.; Mestre, R.; Palacios, L.; Sánchez, S. Fundamental aspects of enzyme-powered micro- and nanoswimmers. Acc. Chem. Res. 2018, 51, 2662–2671.
Patiño, T.; Feiner-Gracia, N.; Arqué, X.; Miguel-López, A.; Jannasch, A.; Stumpp, T.; Schäffer, E.; Albertazzi, L.; Sánchez, S. Influence of enzyme quantity and distribution on the self-propulsion of non-Janus urease-powered micromotors. J. Am. Chem. Soc. 2018, 140, 7896–7903.
Li, T. C.; Kheifets, S.; Medellin, D.; Raizen, M. G. Measurement of the instantaneous velocity of a Brownian particle. Science 2010, 328, 1673–1675.
Bao, H. M.; Lv, F.; Liu, T. J. A pro-angiogenic degradable Mg-poly(lactic-co-glycolic acid) implant combined with rhbFGF in a rat limb ischemia model. Acta Biomater. 2017, 64, 279–289.
Jiao, X. Y.; Wang, Z. M.; Xiu, J.; Dai, W. H.; Zhao, L.; Xu, T. L.; Du, X.; Wen, Y. Q.; Zhang, X. J. NIR powered Janus nanocarrier for deep tumor penetration. Appl. Mater. Today 2020, 18, 100504.
Xing, Y.; Zhou, M. Y.; Du, X.; Li, X. Y.; Li, J. Q.; Xu, T. L.; Zhang, X. J. Hollow mesoporous carbon@Pt Janus nanomotors with dual response of H2O2 and near-infrared light for active cargo delivery. Appl. Mater. Today 2019, 17, 85–91.
Ding, Y. H.; Yang, Z. L.; Bi, C. W. C.; Yang, M.; Zhang, J. C.; Xu, S. L.; Lu, X.; Huang, N.; Huang, P. B.; Leng, Y. Modulation of protein adsorption, vascular cell selectivity and platelet adhesion by mussel-inspired surface functionalization. J. Mater. Chem. B 2014, 2, 3819–3829.
Yang, Z.; Huang, R.; Zheng, B.; Guo, W.; Li, C.; He, W.; Wei, Y.; Du, Y.; Wang, H.; Wu, D. et al. Highly Stretchable, Adhesive, Biocompatible, and Antibacterial Hydrogel Dressings for Wound Healing. Adv. Sci. 2021, 8, 2003627.
Lee, B. P.; Messersmith, P. B.; Israelachvili, J. N.; Waite, J. H. Mussel-inspired adhesives and coatings. Annu. Rev. Mater. Res. 2011, 41, 99–132.
Ismaeel, A.; Franco, M. E.; Lavado, R.; Papoutsi, E.; Casale, G. P.; Fuglestad, M.; Mietus, C. J.; Haynatzki, G. R.; Smith, R. S.; Bohannon, W. T. et al. Altered metabolomic profile in patients with peripheral artery disease. J. Clin. Med. 2019, 8, 1463.
Dash, B. C.; Thomas, D.; Monaghan, M.; Carroll, O.; Chen, X. Z.; Woodhouse, K.; O'Brien, T.; Pandit, A. An injectable elastin-based gene delivery platform for dose-dependent modulation of angiogenesis and inflammation for critical limb ischemia. Biomaterials 2015, 65, 126–139.
Bai, B. B.; Gu, C. Y.; Lu, X. H.; Ge, X. Y.; Yang, J. L.; Wang, C. F.; Gu, Y. C.; Deng, A. D.; Guo, Y. H.; Feng, X. M. et al. Polydopamine functionalized mesoporous silica as ROS-sensitive drug delivery vehicles for periodontitis treatment by modulating macrophage polarization. Nano Res. 2021, 14, 4577–4583.
Duan, J. W.; Chen, Z. G.; Liang, X. Y.; Chen, Y. L.; Li, H. Y.; Tian, X. X.; Zhang, M. M.; Wang, X. L.; Sun, H. F.; Kong, D. L. et al. Construction and application of therapeutic metal-polyphenol capsule for peripheral artery disease. Biomaterials 2020, 255, 120199.
Yao, J.; Cheng, Y.; Zhou, M.; Zhao, S.; Lin, S. C.; Wang, X. Y.; Wu, J. J. X.; Li, S. R.; Wei, H. ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation. Chem. Sci. 2018, 9, 2927–2933.
Bao, X. F.; Zhao, J. H.; Sun, J.; Hu, M.; Yang, X. R. Polydopamine nanoparticles as efficient scavengers for reactive oxygen species in periodontal disease. ACS Nano 2018, 12, 8882–8892.
Zhao, H.; Zeng, Z. D.; Liu, L.; Chen, J. W.; Zhou, H. T.; Huang, L. L.; Huang, J.; Xu, H.; Xu, Y. Y.; Chen, Z. R. et al. Polydopamine nanoparticles for the treatment of acute inflammation-induced injury. Nanoscale 2018, 10, 6981–6991.
Yin, K. J.; Olsen, K.; Hamblin, M.; Zhang, J. F.; Schwendeman, S. P.; Chen, Y. E. Vascular endothelial cell-specific microRNA-15a inhibits angiogenesis in hindlimb ischemia. J. Biol. Chem. 2012, 287, 27055–27064.
Kang, S. W.; Lim, H. W.; Seo, S. W.; Jeon, O.; Lee, M.; Kim, B. S. Nanosphere-mediated delivery of vascular endothelial growth factor gene for therapeutic angiogenesis in mouse ischemic limbs. Biomaterials 2008, 29, 1109–1117.
Veikkola, T.; Alitalo, K. VEGFs, receptors and angiogenesis. Semin. Cancer Biol. 1999, 9, 211–220.
Yang, F.; Cho, S. W.; Son, S. M.; Bogatyrev, S. R.; Singh, D.; Green, J. J.; Mei, Y.; Park, S.; Bhang, S. H.; Kim, B. S. et al. Genetic engineering of human stem cells for enhanced angiogenesis using biodegradable polymeric nanoparticles. Proc. Natl. Acad. Sci. USA 2010, 107, 3317–3322.
Kim, J.; Cao, L.; Shvartsman, D.; Silva, E. A.; Mooney, D. J. Targeted delivery of nanoparticles to ischemic muscle for imaging and therapeutic angiogenesis. Nano Lett. 2011, 11, 694–700.
Weiss, D. J.; Casale, G. P.; Koutakis, P.; Nella, A. A.; Swanson, S. A.; Zhu, Z.; Miserlis, D.; Johanning, J. M.; Pipinos, I. I. Oxidative damage and myofiber degeneration in the gastrocnemius of patients with peripheral arterial disease. J. Transl. Med. 2013, 11, 230.
Barralet, J.; Gbureck, U.; Habibovic, P.; Vorndran, E.; Gerard, C.; Doillon, C. J. Angiogenesis in calcium phosphate scaffolds by inorganic copper ion release. Tissue Eng. Part A 2009, 15, 1601–1609.