AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Liquid metal-assisted hydrothermal preparation of cobalt disulfide on the polymer tape surface for flexible sensor

Yudong Cao1,2,§Haibin Zhong1,3,§Bin Chen1,2Xianglong Lin1Jianfeng Shen1( )Mingxin Ye1( )
Institute of Special materials and Technology, Fudan University, Shanghai 200433, China
Department of Chemistry, Fudan University, Shanghai 200433, China
Department of Materials Science, Fudan University, Shanghai 200433, China

§ Yudong Cao and Haibin Zhong contributed equally to this work.

Show Author Information

Graphical Abstract

A simple liquid metal-assisted hydrothermal method for the growth of two-dimensional nanomaterials on the polymer surface was achieved, and used for preparation of a variety of flexible sensors.

Abstract

Nowadays, two-dimensional transition metal chalcogenides have become attractive materials for flexible wearable devices because of their intriguing chemistry characteristics and sensitivity to external stimuli. However, the growth of two-dimensional materials on polymer surfaces is generally carried out by the time-consuming and costly chemical vapor deposition method. Reducing the manufacturing and integration costs while improving the device performance remains to be challenging. Herein, we report a simple liquid metal-assisted hydrothermal method for the growth of two-dimensional nanomaterials on the polymer surface. Specifically, a layer of liquid metal was coated on commercial tape, while layered cobalt sulfide was grown on its surface by a simple one-step hydrothermal method. Different kinds of flexible sensors can be prepared, such as bending sensor, pressure sensor, and humidity sensor, which can be used to detect motion, writing, breathing, and other signals. This strategy can also be assigned to sensing signals on different objects, which may further expand and enrich the application of two-dimensional materials in sensing.

Electronic Supplementary Material

Download File(s)
12274_2022_5357_MOESM1_ESM.pdf (1.1 MB)

References

[1]

Wang, C. F.; Wang, C. H.; Huang, Z. L.; Xu, S. Materials and structures toward soft electronics. Adv. Mater. 2018, 30, 1801368.

[2]

Chen, J. W.; Zhu, Y. T.; Chang, X. H.; Pan, D.; Song, G.; Guo, Z. H.; Naik, N. Recent progress in essential functions of soft electronic skin. Adv. Funct. Mater. 2021, 31, 2104686.

[3]
Jiang, S.; Liu, X. J.; Liu, J. P.; Ye, D.; Duan, Y. Q.; Li, K.; Yin, Z. P.; Huang, Y. A. Flexible metamaterial electronics. Adv. Mater., in press, https://doi.org/10.1002/adma.202200070.
[4]

Ates, H. C.; Nguyen, P. Q.; Gonzalez-Macia, L.; Morales-Narváez, E.; Güder, F.; Collins, J. J.; Dincer, C. End-to-end design of wearable sensors. Nat. Rev. Mater. 2022, 7, 887–907.

[5]

Wang, X. L.; Guo, R.; Liu, J. Liquid metal based soft robotics: Materials, designs, and applications. Adv. Mater. Technol. 2019, 4, 1800549.

[6]

Shi, Z. Y.; Meng, L. X.; Shi, X. L.; Li, H. P.; Zhang, J. Z.; Sun, Q. Q.; Liu, X. Y.; Chen, J. Z.; Liu, S. R. Morphological engineering of sensing materials for flexible pressure sensors and artificial intelligence applications. Nano-Micro Lett. 2022, 14, 141.

[7]

Heng, W. Z.; Solomon, S.; Gao, W. Flexible electronics and devices as human–machine interfaces for medical robotics. Adv. Mater. 2022, 34, 2107902.

[8]

Han, S. T.; Peng, H. Y.; Sun, Q. J.; Venkatesh, S.; Chung, K. S.; Lau, S. C.; Zhou, Y.; Roy, V. A. L. An overview of the development of flexible sensors. Adv. Mater. 2017, 29, 1700375.

[9]

Chun, K. Y.; Seo, S.; Han, C. S. A wearable all-gel multimodal cutaneous sensor enabling simultaneous single-site monitoring of cardiac-related biophysical signals. Adv. Mater. 2022, 34, 2110082.

[10]

Gao, J. W.; Fan, Y. B.; Zhang, Q. T.; Luo, L.; Hu, X. Q.; Li, Y.; Song, J. C.; Jiang, H. J.; Gao, X. Y.; Zheng, L. et al. Ultra-robust and extensible fibrous mechanical sensors for wearable smart healthcare. Adv. Mater. 2022, 34, 2107511.

[11]

Song, J. C.; Wei, Y.; Xu, M. Z.; Gao, J. W.; Luo, L.; Wu, H.; Li, X. J.; Li, Y.; Wang, X. W. Highly sensitive flexible temperature sensor made using PEDOT: PSS/PANI. ACS Appl. Polym. Mater. 2022, 4, 766–772.

[12]

Pan, L.; Cai, P. Q.; Mei, L.; Cheng, Y.; Zeng, Y.; Wang, M.; Wang, T.; Jiang, Y.; Ji, B. H.; Li, D. C. et al. A compliant ionic adhesive electrode with ultralow bioelectronic impedance. Adv. Mater. 2020, 32, 2003723.

[13]
Lee, Y.; Liu, Y. X.; Seo, D. G.; Oh, J. Y.; Kim, Y.; Li, J. X.; Kang, J.; Kim, J.; Mun, J.; Foudeh, A. M. et al. A low-power stretchable neuromorphic nerve with proprioceptive feedback. Nat. Biomed. Eng., in press, https://doi.org/10.1038/s41551-022-00918-x.
[14]

Wen, N.; Zhang, L.; Jiang, D. W.; Wu, Z. J.; Li, B.; Sun, C. Y.; Guo, Z. H. Emerging flexible sensors based on nanomaterials: Recent status and applications. J. Mater. Chem. A 2020, 8, 25499–25527.

[15]

Jian, M. Q.; Wang, C. Y.; Wang, Q.; Wang, H. M.; Xia, K.; Yin, Z.; Zhang, M. C.; Liang, X. P.; Zhang, Y. Y. Advanced carbon materials for flexible and wearable sensors. Sci. China Mater. 2017, 60, 1026–1062.

[16]

Park, J.; Hwang, J. C.; Kim, G. G.; Park, J. U. Flexible electronics based on one-dimensional and two-dimensional hybrid nanomaterials. InfoMat 2020, 2, 33–56.

[17]

Feng, W.; Zheng, W.; Gao, F.; Chen, X. S.; Liu, G. B.; Hasan, T.; Cao, W. W.; Hu, P. A. Sensitive electronic-skin strain sensor array based on the patterned two-dimensional α-In2Se3. Chem. Mater. 2016, 28, 4278–4283.

[18]

Zhang, R. F.; Jiang, J.; Wu, W. Z. Scalably nanomanufactured atomically thin materials-based wearable health sensors. Small Struct. 2022, 3, 2100120.

[19]

Yang, T. T.; Jiang, X.; Huang, Y. H.; Tian, Q.; Zhang, L.; Dai, Z. H.; Zhu, H. W. Mechanical sensors based on two-dimensional materials: Sensing mechanisms, structural designs and wearable applications. iScience 2022, 25, 103728.

[20]

Jiang, H. J.; Zheng, L.; Liu, Z.; Wang, X. W. Two-dimensional materials: From mechanical properties to flexible mechanical sensors. InfoMat 2020, 2, 1077–1094.

[21]

Zhu, M. J.; Du, X. H.; Liu, S.; Li, J. H.; Wang, Z. Q.; Ono, T. A review of strain sensors based on two-dimensional molybdenum disulfide. J. Mater. Chem. C 2021, 9, 9083–9101.

[22]

Zheng, L.; Wang, X. W.; Jiang, H. J.; Xu, M. Z.; Huang, W.; Liu, Z. Recent progress of flexible electronics by 2D transition metal dichalcogenides. Nano Res. 2022, 15, 2413–2432.

[23]

Wang, L. D.; Xu, D.; Jiang, L. F.; Gao, J.; Tang, Z. M.; Xu, Y. J.; Chen, X.; Zhang, H. Transition metal dichalcogenides for sensing and oncotherapy: Status, challenges, and perspective. Adv. Funct. Mater. 2021, 31, 2004408.

[24]

Chen, X. Y.; Liu, C. B.; Mao, S. Environmental analysis with 2D transition-metal dichalcogenide-based field-effect transistors. Nano-Micro Lett. 2020, 12, 95.

[25]

Ping, J. F.; Fan, Z. X.; Sindoro, M.; Ying, Y. B.; Zhang, H. Recent advances in sensing applications of two-dimensional transition metal dichalcogenide nanosheets and their composites. Adv. Funct. Mater. 2017, 27, 1605817.

[26]

Tian, B.; Tian, B. N.; Smith, B.; Scott, M. C.; Lei, Q.; Hua, R. N.; Tian, Y.; Liu, Y. Facile bottom-up synthesis of partially oxidized black phosphorus nanosheets as metal-free photocatalyst for hydrogen evolution. Proc. Natl. Acad. Sci. USA 2018, 115, 4345–4350.

[27]

Sun, D.; Schaak, R. E. Solution-mediated growth of two-dimensional SnSe@GeSe nanosheet heterostructures. Chem. Mater. 2017, 29, 817–822.

[28]

Kim, Y.; Cruz, S. S.; Lee, K.; Alawode, B. O.; Choi, C.; Song, Y.; Johnson, J. M.; Heidelberger, C.; Kong, W.; Choi, S. et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature 2017, 544, 340–343.

[29]

Xu, M. Z.; Tang, B. J.; Lu, Y. H.; Zhu, C.; Lu, Q. B.; Zhu, C.; Zheng, L.; Zhang, J. Y.; Han, N. N.; Fang, W. D. et al. Machine learning driven synthesis of few-layered WTe2 with geometrical control. J. Am. Chem. Soc. 2021, 143, 18103–18113.

[30]

Liu, L. X.; Chen, W.; Zhang, H. B.; Wang, Q. W.; Guan, F. L.; Yu, Z. Z. Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 2019, 29, 1905197.

[31]

Yun, T.; Jin, H. M.; Kim, D. H.; Han, K. H.; Yang, G. G.; Lee, G. Y.; Lee, G. S.; Choi, J. Y.; Kim, I. D.; Kim, S. O. 2D metal chalcogenide nanopatterns by block copolymer lithography. Adv. Funct. Mater. 2018, 28, 1804508.

[32]

Park, S.; Lee, A.; Choi, K. H.; Hyeong, S. K.; Bae, S.; Hong, J. M.; Kim, T. W.; Hong, B. H.; Lee, S. K. Layer-selective synthesis of MoS2 and WS2 structures under ambient conditions for customized electronics. ACS Nano 2020, 14, 8485–8494.

[33]

Xu, M. Z.; Gao, J. W.; Song, J. C.; Wang, H. X.; Zheng, L.; Wei, Y.; He, Y. M.; Wang, X. W.; Huang, W. Programmable patterned MoS2 film by direct laser writing for health-related signals monitoring. iScience 2021, 24, 103313.

[34]

Liang, Z. Q.; Pei, Y.; Chen, C. J.; Jiang, B.; Yao, Y. G.; Xie, H.; Jiao, M. L.; Chen, G. G.; Li, T. Y.; Yang, B. et al. General, vertical, three-dimensional printing of two-dimensional materials with multiscale alignment. ACS Nano 2019, 13, 12653–12661.

[35]

Wang, J. H.; Cui, W.; Liu, Q.; Xing, Z. C.; Asiri, A. M.; Sun, X. P. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 2016, 28, 215–230.

[36]

Xue, G. F.; Bai, T.; Wang, W. G.; Wang, S. J.; Ye, M. D. Recent advances in various applications of nickel cobalt sulfide-based materials. J. Mater. Chem. A 2022, 10, 8087–8106.

[37]

Suri, G.; Tyagi, M.; Seshadri, G.; Verma, G. L.; Khandal, R. K. Novel nanocomposite optical plastics: Dispersion of titanium in polyacrylates. J. Nanotechnol. 2010, 2010, 531284.

[38]

Tugut, F.; Turgut, M.; Saraydın, D. Influence of concentrations of methacrylate and acrylate monomers on the properties of fiber reinforced polymethyl methacrylate denture base materials. Acta Chem. Iasi 2018, 26, 329–350.

[39]

Yin, J.; Li, Y. X.; Lv, F.; Lu, M.; Sun, K.; Wang, W.; Wang, L.; Cheng, F. Y.; Li, Y. F.; Xi, P. X. et al. Oxygen vacancies dominated NiS2/CoS2 interface porous nanowires for portable Zn-air batteries driven water splitting devices. Adv. Mater. 2017, 29, 1704681.

[40]

Zhang, H. C.; Li, Y. J.; Zhang, G. X.; Xu, T. H.; Wan, P. B.; Sun, X. M. A metallic CoS2 nanopyramid array grown on 3D carbon fiber paper as an excellent electrocatalyst for hydrogen evolution. J. Mater. Chem. A 2015, 3, 6306–6310.

[41]

Xing, J. C.; Zhu, Y. L.; Zhou, Q. W.; Zheng, X. D.; Jiao, Q. J. Fabrication and shape evolution of CoS2 octahedrons for application in supercapacitors. Electrochim. Acta 2014, 136, 550–556.

[42]

Wang, Z.; Liu, C.; Shi, G. F.; Ma, H.; Jiang, X.; Zhang, Q.; Zhang, H. Q.; Su, Y.; Yu, J. L.; Jia, S. M. Preparation and electrochemical properties of CoS2/carbon nanofiber composites. Ionics 2019, 25, 5035–5043.

[43]

Higgins, D. C.; Hassan, F. M.; Seo, M. H.; Choi, J. Y.; Hoque, M. A.; Lee, D. U.; Chen, Z. Shape-controlled octahedral cobalt disulfide nanoparticles supported on nitrogen and sulfur-doped graphene/carbon nanotube composites for oxygen reduction in acidic electrolyte. J. Mater. Chem. A 2015, 3, 6340–6350.

[44]

Zhu, H.; Wang, H. B.; Zhu, R. H.; Zhou, L.; Cao, B. M.; Yu, Z. R.; Zeng, D. J.; Zhang, C. J.; Zhang, L.; Ma, D. Y. Ultra-thin CoS2 nanosheets synthesized by one-step hydrothermal process for hydrogen evolution. J. Mater. Sci.: Mater. Electron. 2021, 32, 9149–9157.

[45]

Tzou, A. J.; Chu, K. H.; Lin, I. F.; Østreng, E.; Fang, Y. S.; Wu, X. P.; Wu, B. W.; Shen, C. H.; Shieh, J. M.; Yeh, W. K.; Chang, C. Y. et al. AlN surface passivation of GaN-based high electron mobility transistors by plasma-enhanced atomic layer deposition. Nanoscale Res. Lett. 2017, 12, 315.

[46]

Loubat, A.; Béchu, S.; Bouttemy, M.; Vigneron, J.; Lincot, D.; Guillemoles, J. F.; Etcheberry, A. Cu depletion on Cu(In, Ga)Se2 surfaces investigated by chemical engineering: An X-ray photoelectron spectroscopy approach. J. Vac. Sci. Technol. A 2019, 37, 041201.

[47]

Lu, Y. Y.; Yang, G.; Shen, Y. J.; Yang, H. Y.; Xu, K. C. Multifunctional flexible humidity sensor systems towards noncontact wearable electronics. Nano-Micro Lett. 2022, 14, 150.

Nano Research
Pages 7575-7582
Cite this article:
Cao Y, Zhong H, Chen B, et al. Liquid metal-assisted hydrothermal preparation of cobalt disulfide on the polymer tape surface for flexible sensor. Nano Research, 2023, 16(5): 7575-7582. https://doi.org/10.1007/s12274-022-5357-1
Topics:

3313

Views

1

Crossref

1

Web of Science

1

Scopus

1

CSCD

Altmetrics

Received: 29 September 2022
Revised: 13 November 2022
Accepted: 24 November 2022
Published: 21 February 2023
© Tsinghua University Press 2022
Return