AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Strong in-plane optical anisotropy in 2D van der Waals antiferromagnet VOCl

Tianle Zhang1,§Jiantao Du1,§Wenjun Wang2,3Keming Wu4Shuai Yue4,5Xinfeng Liu4Wanfu Shen6Chunguang Hu6Minghui Wu7,8Zhe Qu2Shengxue Yang1( )Chengbao Jiang1( )
School of Materials Science and Engineering, Beihang University, Beijing 100191, China
Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
CAS Key Laboratory of Standardization and Measurement for Nanotechnology CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
College of Materials and Chemical Engineering, MinJiang University, Fuzhou 350108, China
Fujian Key laboratory of Functional marine Sensing materials, Minjiang University, Fuzhou 350108, China

§ Tianle Zhang and Jiantao Du contributed equally to this work.

Show Author Information

Graphical Abstract

The strong in-plane optical anisotropy in two-dimensional (2D) van der Waals (vdW) antiferromagnet VOCl has been systematically investigated. These findings will benefit the applications of VOCl in the field of strain sensors, polarization-dependent electronics and optospintronics.

Abstract

Two-dimensional (2D) van der Waals (vdW) magnetic materials with strong in-plane anisotropy can make possible novel applications such as optospintronics and strain sensors. In this work, the strong in-plane optical anisotropy in 2D vdW antiferromagnet VOCl has been systematically investigated. The optical brightness and absorption coefficient exhibit evident periodic variation with the change of incident polarization, unveiling the strong in-plane anisotropic optical absorption. The Raman intensity in this material shows obvious dependence on the polarization angle of incident laser, demonstrating that the phonon properties possess strong in-plane anisotropy. Besides, we have also realized in-situ visualization of in-plane optical reflection anisotropy in this material. Moreover, the strong second harmonic generation (SHG) signal can only be detected when the incident polarization is along specific in-plane crystal orientations, illustrating the presence of strong in-plane nonlinear optical anisotropy. These findings will benefit the applications of VOCl in the field of polarization-dependent electronics and spintronics.

Electronic Supplementary Material

Download File(s)
12274_2022_5358_MOESM1_ESM.pdf (1.2 MB)

References

[1]

Li, L.; Han, W.; Pi, L. J.; Niu, P.; Han, J. B.; Wang, C. L.; Su, B.; Li, H. Q.; Xiong, J.; Bando, Y. et al. Emerging in-plane anisotropic two-dimensional materials. InfoMat 2019, 1, 54–73.

[2]

Yang, S. X.; Hu, C. G.; Wu, M. H.; Shen, W. F.; Tongay, S.; Wu, K. D.; Wei, B.; Sun, Z. Y.; Jiang, C. B.; Huang, L. et al. In-plane optical anisotropy and linear dichroism in low-symmetry layered TlSe. ACS Nano 2018, 12, 8798–8807.

[3]

Liu, S.; Chen, Y. J.; Yang, S. X.; Jiang, C. B. SnSe field-effect transistors with improved electrical properties. Nano Res. 2022, 15, 1532–1537.

[4]

Li, H.; Sanchez-Santolino, G.; Puebla, S.; Frisenda, R.; Al-Enizi, A. M.; Nafady, A.; D’Agosta, R.; Castellanos-Gomez, A. Strongly anisotropic strain-tunability of excitons in exfoliated ZrSe3. Adv. Mater. 2022, 34, 2103571.

[5]

Hou, S. J.; Guo, Z. F.; Xiong, T.; Wang, X. G.; Yang, J. H.; Liu, Y. Y.; Niu, Z. C.; Liu, S. Y.; Liu, B.; Zhai, S. Q. et al. Optical and electronic anisotropy of a 2D semiconductor SiP. Nano Res. 2022, 15, 8579–8586.

[6]

Lin, H.; Zhang, Z. F.; Zhang, H. H.; Lin, K. T.; Wen, X. M.; Liang, Y.; Fu, Y.; Lau, A. K. T.; Ma, T. Y.; Qiu, C. W. et al. Engineering van der Waals materials for advanced metaphotonics. Chem. Rev. 2022, 122, 15204–15355.

[7]

Liang, J. C.; Hu, Y.; Zhang, K. Q.; Wang, Y. D.; Song, X. M.; Tao, A. Y.; Liu, Y. Z.; Jin, Z. 2D layered black arsenic-phosphorus materials: Synthesis, properties, and device applications. Nano Res. 2022, 15, 3737–3752.

[8]

Wang, C.; Zhou, X. Y.; Zhou, L. W.; Tong, N. H.; Lu, Z. Y.; Ji, W. A family of high-temperature ferromagnetic monolayers with locked spin-dichroism-mobility anisotropy: MnNX and CrCX (X = Cl, Br, I; C = S, Se, Te). Sci. Bull. 2019, 64, 293–300.

[9]

Nair, A. K.; Rani, S.; Kamalakar, M. V.; Ray, S. J. Bi-stimuli assisted engineering and control of magnetic phase in monolayer CrOCl. Phys. Chem. Chem. Phys. 2020, 22, 12806–12813.

[10]

Yang, S. X.; Zhang, T. L.; Jiang, C. B. Van der Waals magnets: Material family, detection and modulation of magnetism, and perspective in spintronics. Adv. Sci. 2021, 8, 2002488.

[11]

Kanamaru, F.; Yamanaka, S.; Koizumi, M.; Nagai, S. Synthesis and some properties of a layer-type inorganic-organic complex of FeOCl and pyridine. Chem. Lett. 1974, 3, 373–376.

[12]

Krimmel, A.; Strempfer, J.; Bohnenbuck, B.; Keimer, B.; Hoinkis, M.; Klemm, M.; Horn, S.; Loidl, A.; Sing, M.; Claessen, R. et al. Incommensurate structure of the spin-Peierls compound TiOCl in zero and finite magnetic fields. Phys. Rev. B 2006, 73, 172413.

[13]

Komarek, A. C.; Taetz, T.; Fernández-Díaz, M. T.; Trots, D. M.; Möller, A.; Braden, M. Strong magnetoelastic coupling in VOCl: Neutron and synchrotron powder X-ray diffraction study. Phys. Rev. B 2009, 79, 104425.

[14]

Zhang, J.; Wölfel, A.; Li, L.; Van Smaalen, S.; Williamson, H. L.; Kremer, R. K. Magnetoelastic coupling in the incommensurate antiferromagnetic phase of FeOCl. Phys. Rev. B 2012, 86, 134428.

[15]

Angelkort, J.; Wölfel, A.; Schönleber, A.; Van Smaalen, S.; Kremer, R. K. Observation of strong magnetoelastic coupling in a first-order phase transition of CrOCl. Phys. Rev. B 2009, 80, 144416.

[16]

Miao, N. H.; Xu, B.; Zhu, L. G.; Zhou, J.; Sun, Z. M. 2D intrinsic ferromagnets from van der Waals antiferromagnets. J. Am. Chem. Soc. 2018, 140, 2417–2420.

[17]

Zhang, T. L.; Wang, Y. M.; Li, H. X.; Zhong, F.; Shi, J.; Wu, M. H.; Sun, Z. Y.; Shen, W. F.; Wei, B.; Hu, W. D. et al. Magnetism and optical anisotropy in van der Waals antiferromagnetic insulator CrOCl. ACS Nano. 2019, 13, 11353–11362.

[18]

Zheng, X. M.; Wei, Y. H.; Zhang, X. Z.; Wei, Z. H.; Luo, W.; Guo, X.; Liu, J. X.; Peng, G.; Cai, W. W.; Huang, H. et al. Symmetry engineering induced in-plane polarization in MoS2 through van der Waals interlayer coupling. Adv. Funct. Mater. 2022, 32, 2202658.

[19]

Zeng, Y.; Gu, P. F.; Zhao, Z. J.; Zhang, B.; Lin, Z. C.; Peng, Y. X.; Li, W.; Zhao, W. T.; Leng, Y. C.; Tan, P. H. et al. 2D FeOCl: A highly in-plane anisotropic antiferromagnetic semiconductor synthesized via temperature-oscillation chemical vapor transport. Adv. Mater. 2022, 34, 2108847.

[20]

Wang, W. J.; Xu, X. T.; Shen, J.; Wang, Z.; Zhang, S. L.; Qu, Z. Spin-phonon coupling in van der Waals antiferromagnet VOCl. Chin. Phys. B 2021, 30, 107502.

[21]

Wang, W. J.; Sun, R.; He, S. J.; Jia, Z. Y.; Su, C. L.; Li, Y.; Wang, Z. C. Atomic structure, work function and magnetism in layered single crystal VOCl. 2D Mater. 2021, 8, 015027.

[22]

Villalpando, G.; Ferrenti, A. M.; Singha, R.; Song, X. Y.; Cheng, G. M.; Yao, N.; Schoop, L. M. Chemical exfoliation toward magnetic 2D VOCl monolayers. ACS Nano 2022, 16, 13814–13820.

[23]

Wang, R. J.; Cui, Q. L.; Zhu, W.; Niu, Y. J.; Liu, Z. F.; Zhang, L.; Wu, X. J.; Chen, S. M.; Song, L. In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction. Chin. Phys. B 2022, 31, 096802.

[24]

Zhu, W.; Cui, Q.; Adam, M. L.; Liu, Z.; Zhang, L.; Dai, Z.; Yin, Y.; Chen, S.; Song, L. Ternary VOCl single-crystal as efficient gate dielectric for 2D field-effect transistors. 2D Mater. 2021, 8, 025010.

[25]

Sun, Y. M.; Xiong, J. X.; Wu, X. M.; Gao, W.; Huo, N. J.; Li, J. B. Highly sensitive infrared polarized photodetector enabled by out-of-plane PSN architecture composing of p-MoTe2, semimetal-MoTe2 and n-SnSe2. Nano Res. 2022, 15, 5384–5391.

[26]

Higuchi, T.; Kuwata-Gonokami, M. Control of antiferromagnetic domain distribution via polarization-dependent optical annealing. Nat. Commun. 2016, 7, 10720.

[27]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[28]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[29]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[30]

Mao, N. N.; Tang, J. Y.; Xie, L. M.; Wu, J. X.; Han, B. W.; Lin, J. J.; Deng, S. B.; Ji, W.; Xu, H.; Liu, K. H. et al. Optical anisotropy of black phosphorus in the visible regime. J. Am. Chem. Soc. 2016, 138, 300–305.

[31]

Liu, X. L.; Zhang, X.; Lin, M. L.; Tan, P. H. Different angle-resolved polarization configurations of Raman spectroscopy: A case on the basal and edge plane of two-dimensional materials. Chin. Phys. B 2017, 26, 067802.

[32]

Beams, R.; Cançado, L. G.; Krylyuk, S.; Kalish, I.; Kalanyan, B.; Singh, A. K.; Choudhary, K.; Bruma, A.; Vora, P. M.; Tavazza, F. et al. Characterization of few-layer 1T’ MoTe2 by polarization-resolved second harmonic generation and Raman scattering. ACS Nano 2016, 10, 9626–9636.

[33]

Shen, W. F.; Hu, C. G.; Tao, J.; Liu, J.; Fan, S. Q.; Wei, Y. X.; An, C. H.; Chen, J. C.; Wu, S.; Li, Y. N. et al. Resolving the optical anisotropy of low-symmetry 2D materials. Nanoscale 2018, 10, 8329–8337.

[34]

Shi, J.; Yu, P.; Liu, F. C.; He, P.; Wang, R.; Qin, L.; Zhou, J. B.; Li, X.; Zhou, J. D.; Sui, X. et al. 3R MoS2 with broken inversion symmetry: A promising ultrathin nonlinear optical device. Adv. Mater. 2017, 29, 1701486.

[35]

Zhou, J. D.; Shi, J.; Zeng, Q. S.; Chen, Y.; Niu, L.; Liu, F. C.; Yu, T.; Suenaga, K.; Liu, X. F.; Lin, J. H. et al. InSe monolayer: Synthesis, structure and ultra-high second-harmonic generation. 2D Mater. 2018, 5, 025019.

[36]

Capretti, A.; Walsh, G. F.; Minissale, S.; Trevino, J.; Forestiere, C.; Miano, G.; Dal Negro, L. Multipolar second harmonic generation from planar arrays of Au nanoparticles. Opt. Express 2012, 20, 15797–15806.

[37]

Bachelier, G.; Russier-Antoine, I.; Benichou, E.; Jonin, C.; Brevet, P. F. Multipolar second-harmonic generation in noble metal nanoparticles. J. Opt. Soc. Am. B 2008, 25, 955–960.

Nano Research
Pages 7481-7488
Cite this article:
Zhang T, Du J, Wang W, et al. Strong in-plane optical anisotropy in 2D van der Waals antiferromagnet VOCl. Nano Research, 2023, 16(5): 7481-7488. https://doi.org/10.1007/s12274-022-5358-0
Topics:

3812

Views

5

Crossref

5

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 13 November 2022
Revised: 23 November 2022
Accepted: 24 November 2022
Published: 05 January 2023
© Tsinghua University Press 2022
Return