Graphical Abstract

The blocking of the immune checkpoint pathway with antibodies, especially targeting to programmed death-1/programmed death ligand-1 (PD-1/PD-L1) pathway, was currently a widely used treatment strategy in clinical practice. However, the shortcomings of PD-L1 antibodies were constantly exposed with the deepening of its research and their therapeutic effect was limited by the translocation and redistribution of intracellular PD-L1. Herein, we proposed to improve immune checkpoint blockade therapy by using liposomes-coated CaO2 (CaO2@Lipo) nanoparticles to inhibit the de novo biosynthesis of PD-L1. CaO2@Lipo would produce oxygen and reduce hypoxia-inducible factor-1α (HIF-1α) level, which then downregulated the expression of PD-L1. Our in vitro and in vivo results have confirmed CaO2@Lipo promoted the degradation of HIF-1α and then downregulated the expression of PD-L1 in cancer cells for avoiding immune escape. Furthermore, to mimicking the clinical protocol of anti-PD-L1 antibodies + chemo-drugs, CaO2@Lipo was combined with doxorubicin (DOX) to investigate the tumor inhibition efficiency. We found CaO2@Lipo enhanced DOX-induced immunogenic cell death (ICD) effect, which then promoted the infiltration of T cells, strengthened the blocking effect, and thus provided an effective means to overcome the traditional immune checkpoint blockade treatment.
Ribas, A.; Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 2018, 359, 1350–1355.
Sun, C.; Mezzadra, R.; Schumacher, T. N. Regulation and function of the PD-L1 checkpoint. Immunity 2018, 48, 434–452.
Han, X.; Shen, S. F.; Fan, Q.; Chen, G. J.; Archibong, E.; Dotti, G.; Liu, Z.; Gu, Z.; Wang, C. Red blood cell-derived nanoerythrosome for antigen delivery with enhanced cancer immunotherapy. Sci. Adv. 2019, 5, eaaw6870.
Smit, E. F.; de Langen, A. J. Pembrolizumab for all PD-L1-positive NSCLC. Lancet 2019, 393, 1776–1778.
Li, L. Y.; Miao, Q. W.; Meng, F. Q.; Li, B. Q.; Xue, T. Y.; Fang, T. L.; Zhang, Z. R.; Zhang, J. X.; Ye, X. Y.; Kang, Y. et al. Genetic engineering cellular vesicles expressing CD64 as checkpoint antibody carrier for cancer immunotherapy. Theranostics 2021, 11, 6033–6043.
Han, X.; Li, H. J.; Zhou, D. J.; Chen, Z. W.; Gu, Z. Local and targeted delivery of immune checkpoint blockade therapeutics. Acc. Chem. Res. 2020, 53, 2521–2533.
Voorwerk, L.; Slagter, M.; Horlings, H. M.; Sikorska, K.; van de Vijver, K. K.; de Maaker, M.; Nederlof, I.; Kluin, R. J. C.; Warren, S.; Ong, S. et al. Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: The TONIC trial. Nat. Med. 2019, 25, 920–928.
Ascierto, P. A.; Long, G. V.; Robert, C.; Brady, B.; Dutriaux, C.; Di Giacomo, A. M.; Mortier, L.; Hassel, J. C.; Rutkowski, P.; McNeil, C. et al. Survival outcomes in patients with previously untreated BRAF wild-type advanced melanoma treated with nivolumab therapy: Three-year follow-up of a randomized phase 3 trial. JAMA Oncol. 2019, 5, 187–194.
Yao, H.; Lan, J.; Li, C. S.; Shi, H. B.; Brosseau, J. P.; Wang, H. B.; Lu, H. J.; Fang, C. Y.; Zhang, Y.; Liang, L. X. et al. Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours. Nat. Biomed. Eng. 2019, 3, 306–317.
Burr, M. L.; Sparbier, C. E.; Chan, Y. C.; Williamson, J. C.; Woods, K.; Beavis, P. A.; Lam, E. Y. N.; Henderson, M. A.; Bell, C. C.; Stolzenburg, S. et al. CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature 2017, 549, 101–105.
Han, X. Y.; Wang, L. L.; Li, T.; Zhang, J. H.; Zhang, D. L.; Li, J. L.; Xia, Y. H.; Liu, Y. L.; Tan, W. H. Beyond blocking: Engineering RNAi-mediated targeted immune checkpoint nanoblocker enables T-cell-independent cancer treatment. ACS Nano 2020, 14, 17524–17534.
Zhao, L.; Luo, Y. L.; Huang, Q. Y.; Cao, Z. Y.; Yang, X. Z. Photo-enhanced CRISPR/Cas9 system enables robust PD-L1 gene disruption in cancer cells and cancer stem-like cells for efficient cancer immunotherapy. Small 2020, 16, 2004879.
Tang, H. L.; Xu, X. J.; Chen, Y. X.; Xin, H. H.; Wan, T.; Li, B. W.; Pan, H. M.; Li, D.; Ping, Y. Reprogramming the tumor microenvironment through second-near-infrared-window photothermal genome editing of PD-L1 mediated by supramolecular gold nanorods for enhanced cancer immunotherapy. Adv. Mater. 2021, 33, 2006003.
Tu, K.; Deng, H.; Kong, L.; Wang, Y.; Yang, T.; Hu, Q.; Hu, M.; Yang, C. L.; Zhang, Z. P. Reshaping tumor immune microenvironment through acidity-responsive nanoparticles featured with CRISPR/Cas9-mediated programmed death-ligand 1 attenuation and chemotherapeutics-induced immunogenic cell death. ACS Appl. Mater. Interfaces 2020, 12, 16018–16030.
Xu, Z. K.; Wang, Q. N.; Zhong, H. P.; Jiang, Y. Y.; Shi, X. G.; Yuan, B.; Yu, N.; Zhang, S. B.; Yuan, X. Y.; Guo, S. T. et al. Carrier strategies boost the application of CRISPR/Cas system in gene therapy. Exploration 2022, 2, 20210081.
Manghwar, H.; Li, B.; Ding, X.; Hussain, A.; Lindsey, K.; Zhang, X. L.; Jin, S. X. CRISPR/Cas systems in genome editing: Methodologies and tools for sgRNA design, off-target evaluation, and strategies to mitigate off-target effects. Adv. Sci. 2020, 7, 1902312.
Verdera, H. C.; Kuranda, K.; Mingozzi, F. AAV vector immunogenicity in humans: A long journey to successful gene transfer. Mol. Ther. 2020, 28, 723–746.
Halligan, D. N.; Murphy, S. J. E.; Taylor, C. T. The hypoxia-inducible factor (HIF) couples immunity with metabolism. Semin. Immunol. 2016, 28, 469–477.
Noman, M. Z.; Desantis, G.; Janji, B.; Hasmim, M.; Karray, S.; Dessen, P.; Bronte, V.; Chouaib, S. PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J. Exp. Med. 2014, 211, 781–790.
Barsoum, I. B.; Smallwood, C. A.; Siemens, D. R.; Graham, C. H. A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res. 2014, 74, 665–674.
Ding, X. C.; Wang, L. L.; Zhang, X. D.; Xu, J. L.; Li, P. F.; Liang, H.; Zhang, X. B.; Xie, L.; Zhou, Z. H.; Yang, J. et al. The relationship between expression of PD-L1 and HIF-1α in glioma cells under hypoxia. J. Hematol. Oncol. 2021, 14, 92.
Luo, J. C.; Shibuya, M. A variant of nuclear localization signal of bipartite-type is required for the nuclear translocation of hypoxia inducible factors (1α, 2α and 3α). Oncogene 2001, 20, 1435–1444.
Qian, X. K.; Zhang, Q.; Shao, N.; Shan, Z.; Cheang, T.; Zhang, Z. Q.; Su, Q.; Wang, S. M.; Lin, Y. Respiratory hyperoxia reverses immunosuppression by regulating myeloid-derived suppressor cells and PD-L1 expression in a triple-negative breast cancer mouse model. Am. J. Cancer Res. 2019, 9, 529–545.
Gao, S. T.; Jin, Y.; Ge, K.; Li, Z. H.; Liu, H. F.; Dai, X. Y.; Zhang, Y. H.; Chen, S. Z.; Liang, X. J.; Zhang, J. C. Self-supply of O2 and H2O2 by a nanocatalytic medicine to enhance combined chemo/chemodynamic therapy. Adv. Sci. 2019, 6, 1902137.
Jana, D.; Zhao, Y. L. Strategies for enhancing cancer chemodynamic therapy performance. Exploration 2022, 2, 20210238.
Lv, F. F.; Liu, H. F.; Zhao, G. Q.; Zhao, E. M.; Yan, H. Y.; Che, R. J.; Yang, X. J.; Zhou, X. H.; Zhang, J. C.; Liang, X. J. et al. Therapeutic exosomal vaccine for enhanced cancer immunotherapy by mediating tumor microenvironment. iScience 2022, 25, 103639.
Obeid, M.; Tesniere, A.; Ghiringhelli, F.; Fimia, G. M.; Apetoh, L.; Perfettini, J. L.; Castedo, M.; Mignot, G.; Panaretakis, T.; Casares, N. et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med. 2007, 13, 54–61.
Xie, L. S.; Wang, G. H.; Sang, W.; Li, J.; Zhang, Z.; Li, W. X.; Yan, J.; Zhao, Q.; Dai, Y. L. Phenolic immunogenic cell death nanoinducer for sensitizing tumor to PD-1 checkpoint blockade immunotherapy. Biomaterials 2021, 269, 120638.
Ding, Y. Y.; Wang, Y. X.; Hu, Q. Y. Recent advances in overcoming barriers to cell-based delivery systems for cancer immunotherapy. Exploration 2022, 2, 20210106.
Liu, L. H.; Zhang, Y. H.; Qiu, W. X.; Zhang, L.; Gao, F.; Li, B.; Xu, L.; Fan, J. X.; Li, Z. H.; Zhang, X. Z. Dual-stage light amplified photodynamic therapy against hypoxic tumor based on an O2 self-sufficient nanoplatform. Small 2017, 13, 1701621.
Li, Z. W.; Rong, L. Cascade reaction-mediated efficient ferroptosis synergizes with immunomodulation for high-performance cancer therapy. Biomater. Sci. 2020, 8, 6272–6285.
Shen, S.; Mamat, M.; Zhang, S. C.; Cao, J.; Hood, Z. D.; Figueroa-Cosme, L.; Xia, Y. N. Synthesis of CaO2 nanocrystals and their spherical aggregates with uniform sizes for use as a biodegradable bacteriostatic agent. Small 2019, 15, 1902118.
Yu, Q.; Huang, T. C.; Liu, C.; Zhao, M. L.; Xie, M. J.; Li, G.; Liu, S. J.; Huang, W.; Zhao, Q. Oxygen self-sufficient NIR-activatable liposomes for tumor hypoxia regulation and photodynamic therapy. Chem. Sci. 2019, 10, 9091–9098.
He, C. C.; Zhang, X. J.; Yan, R. C.; Zhao, P. X.; Chen, Y.; Li, M. S.; Chen, C.; Fan, T.; Lu, Y.; Wang, C. et al. Enhancement of cisplatin efficacy by lipid-CaO2 nanocarrier-mediated comprehensive modulation of the tumor microenvironment. Biomater. Sci. 2019, 7, 4260–4272.
Xu, J. L.; Ma, Q. L.; Zhang, Y.; Fei, Z. Y.; Sun, Y. F.; Fan, Q.; Liu, B.; Bai, J. Y.; Yu, Y.; Chu, J. H. et al. Yeast-derived nanoparticles remodel the immunosuppressive microenvironment in tumor and tumor-draining lymph nodes to suppress tumor growth. Nat. Commun. 2022, 13, 110.
Fucikova, J.; Spisek, R.; Kroemer, G.; Galluzzi, L. Calreticulin and cancer. Cell Res. 2021, 31, 5–16.
Vultaggio-Poma, V.; Sarti, A. C.; Di Virgilio, F. Extracellular ATP: A feasible target for cancer therapy. Cells 2020, 9, 2496.
Teo Hansen Selnø, A.; Schlichtner, S.; Yasinska, I. M.; Sakhnevych, S. S.; Fiedler, W.; Wellbrock, J.; Berger, S. M.; Klenova, E.; Gibbs, B. F.; Fasler-Kan, E. et al. High mobility group box 1 (HMGB1) induces toll-like receptor 4-mediated production of the immunosuppressive protein galectin-9 in human cancer cells. Front. Immunol. 2021, 12, 675731.
Zheng, P.; Ding, B. B.; Jiang, Z. Y.; Xu, W. G.; Li, G.; Ding, J. X.; Chen, X. S. Ultrasound-augmented mitochondrial calcium ion overload by calcium nanomodulator to induce immunogenic cell death. Nano Lett. 2021, 21, 2088–2093.
Fan, M.; Liu, H. F.; Yan, H. Y.; Che, R. J.; Jin, Y.; Yang, X. J.; Zhou, X. H.; Yang, H.; Ge, K.; Liang, X. J. et al. A CAR T-inspiring platform based on antibody-engineered exosomes from antigen-feeding dendritic cells for precise solid tumor therapy. Biomaterials 2022, 282, 121424.