AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A gradient solid electrolyte interphase with high Li+ conductivity induced by bisfluoroacetamide additive for stable lithium metal batteries

Zhaoyang Sun1Ziyue Wen1Yi Chen1Yue Ma1Jinxiang Zhang1Yuejiao Li1( )Li Li1,2,3Renjie Chen1,2,3( )
Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
Institute of Advanced Technology, Beijing Institute of Technology, Jinan 250300, China
Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China
Show Author Information

Graphical Abstract

The gradient solid electrolyte interface (SEI) with C–F-rich lithophilic surface and LiF-rich bottom is formed on the anode surface under the function of bisfluoroacetamide (BFA) additive. Meanwhile, the pseudocapacitance generated on the electrode surface enables lithium metal batteries to demonstrate excellent cycling performance.

Abstract

Stable Li metal anodes have become the driving factor for high-energy-density battery systems. However, uncontrolled growth of Li dendrite hinders the application of rechargeable Li metal batteries (LMBs). Here, a multifunctional electrolyte additive bisfluoroacetamide (BFA) was proposed to facilitate high-performance LMBs. The uniform and dense deposition of Li+ was achieved due to the reduced nucleation and plateau overpotential by the addition of BFA. Moreover, X-ray photoelectron spectroscopy (XPS) tests reveal a gradient solid electrolyte interface (SEI) structure on the Li metal surface. Cyclic voltammetry (CV) curves at different sweep speeds prove the formation of pseudocapacitance at the electrode–electrolyte interface, which accelerates the Li+ transport rate and protects the electrode structure. The low activation energy also indicates the ability of rapid Li+ transportation in electrolyte bulk. Therefore, the Li||Li symmetric cells with 1.0 wt.% BFA electrolyte exhibit good cycling performance at 0.5 mA·cm−2 for over 2000 h, and Li||LiNi0.6Co0.2Mn0.2O2 (NCM622) full cells maintain a high capacity for 200 cycles at 1 C rate.

Electronic Supplementary Material

Download File(s)
5363_ESM.pdf (1.2 MB)

References

[1]

Adams, B. D.; Zheng, J. M.; Ren, X. D.; Xu, W.; Zhang, J. G. Accurate determination of Coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 2018, 8, 1702097.

[2]

Chen, X. R.; Li, B. Q.; Zhu, C.; Zhang, R.; Cheng, X. B.; Huang, J. Q.; Zhang, Q. A coaxial-interweaved hybrid lithium metal anode for long-lifespan lithium metal batteries. Adv. Energy Mater. 2019, 9, 1901932.

[3]

Chen, Y. N.; Fu, K.; Zhu, S. Z.; Luo, W.; Wang, Y. B.; Li, Y. J.; Hitz, E.; Yao, Y. G.; Dai, J. Q.; Wan, J. Y. et al. Reduced graphene oxide films with ultrahigh conductivity as Li-ion battery current collectors. Nano Lett. 2016, 16, 3616–3623.

[4]

Su, C. C.; He, M. N.; Cai, M.; Shi, J. Y.; Amine, R.; Rago, N. D.; Guo, J. C.; Rojas, T.; Ngo, A. T.; Amine, K. Solvation-protection-enabled high-voltage electrolyte for lithium metal batteries. Nano Energy 2022, 92, 106720.

[5]

Fang, C. C.; Li, J. X.; Zhang, M. H.; Zhang, Y. H.; Yang, F.; Lee, J. Z.; Lee, M. H.; Alvarado, J.; Schroeder, M. A.; Yang, Y. Y. C. et al. Quantifying inactive lithium in lithium metal batteries. Nature 2019, 572, 511–515.

[6]

Wang, H. S.; Yu, Z. A.; Kong, X.; Kim, S. C.; Boyle, D. T.; Qin, J.; Bao, Z. N.; Cui, Y. Liquid electrolyte: The nexus of practical lithium metal batteries. Joule 2022, 6, 588–616.

[7]

Jang, J.; Shin, J. S.; Park, H.; Song, W. J.; Park, C. B.; Kang, J. Self-assembled protective layer by symmetric ionic liquid for long-cycling lithium-metal batteries. Adv. Energy Mater. 2022, 12, 2103955.

[8]

Liu, B.; Zhang, J. G.; Xu, W. Advancing lithium metal batteries. Joule 2018, 2, 833–845.

[9]

Qian, J. F.; Adams, B. D.; Zheng, J. M.; Xu, W.; Henderson, W. A.; Wang, J.; Bowden, M. E.; Xu, S. C.; Hu, J. Z.; Zhang, J. G. Anode-free rechargeable lithium metal batteries. Adv. Funct. Mater. 2016, 26, 7094–7102.

[10]

Pan, R. J.; Cui, Z. H.; Yi, M.; Xie, Q.; Manthiram, A. Ethylene carbonate-free electrolytes for stable, safer high-nickel lithium-ion batteries. Adv. Energy Mater. 2022, 12, 2103806.

[11]

Shen, K.; Wang, Z.; Bi, X. X.; Ying, Y.; Zhang, D.; Jin, C. B.; Hou, G. Y.; Cao, H. Z.; Wu, L. K.; Zheng, G. Q. et al. Magnetic field-suppressed lithium dendrite growth for stable lithium-metal batteries. Adv. Energy Mater. 2019, 9, 1900260.

[12]

Wang, Q. Y.; Liu, B.; Shen, Y. H.; Wu, J. K.; Zhao, Z. Q.; Zhong, C.; Hu, W. B. Confronting the challenges in lithium anodes for lithium metal batteries. Adv. Sci. (Weinh.) 2021, 8, 2101111.

[13]

Ma, L. B.; Cui, J.; Yao, S. S.; Liu, X. M.; Luo, Y. S.; Shen, X. P.; Kim, J. K. Dendrite-free lithium metal and sodium metal batteries. Energy Storage Mater. 2020, 27, 522–554.

[14]

Wang, A. X.; Tang, S.; Kong, D. B.; Liu, S.; Chiou, K.; Zhi, L. J.; Huang, J. X.; Xia, Y. Y.; Luo, J. Y. Bending-tolerant anodes for lithium-metal batteries. Adv. Mater. 2018, 30, 1703891.

[15]

Hatzell, K. B.; Chen, X. C.; Cobb, C. L.; Dasgupta, N. P.; Dixit, M. B.; Marbella, L. E.; McDowell, M. T.; Mukherjee, P. P.; Verma, A.; Viswanathan, V. et al. Challenges in lithium metal anodes for solid-state batteries. ACS Energy Lett. 2020, 5, 922–934.

[16]

Feng, Y.; Zhou, L. M.; MA, H.; Wu, Z. H.; Zhao, Q.; Li, H. X.; Zhang, K.; Chen, J. Challenges and advances in wide-temperature rechargeable lithium batteries. Energy Environ. Sci. 2022, 15, 1711–1759.

[17]

Ye, Y. S.; Zhao, Y. Y.; Zhao, T.; Xu, S. N.; Xu, Z. X.; Qian, J.; Wang, L. L.; Xing, Y.; Wei, L.; Li, Y. J. et al. An antipulverization and high-continuity lithium metal anode for high-energy lithium batteries. Adv. Mater. 2021, 33, 2105029.

[18]

Zhu, Y. Y.; Xie, J.; Pei, A.; Liu, B. F.; Wu, Y. C.; Lin, D. C.; Li, J.; Wang, H. S.; Chen, H.; Xu, J. W. et al. Fast lithium growth and short circuit induced by localized-temperature hotspots in lithium batteries. Nat. Commun. 2019, 10, 2067.

[19]

Lin, L. D.; Qin, K.; Hu, Y. S.; Li, H.; Huang, X. J.; Suo, L. M.; Chen, L. Q. A better choice to achieve high volumetric energy density: Anode-free lithium metal batteries. Adv. Mater. 2022, 34, 2110323.

[20]

Tang, W.; Yin, X. S.; Chen, Z. X.; Fu, W.; Loh, K. P.; Zheng, G. W. Chemically polished lithium metal anode for high energy lithium metal batteries. Energy Storage Mater. 2018, 14, 289–296.

[21]

Zhu, C. N.; Sun, C. C.; Li, R. H.; Weng, S. T.; Fan, L. W.; Wang, X. F.; Chen, L. X.; Noked, M.; Fan, X. L. Anion-diluent pairing for stable high-energy Li metal batteries. ACS Energy Lett. 2022, 7, 1338–1347.

[22]

Xiao, J.; Li, Q. Y.; Bi, Y. J.; Cai, M.; Dunn, B.; Glossmann, T.; Liu, J.; Osaka, T.; Sugiura, R.; Wu, B. et al. Understanding and applying Coulombic efficiency in lithium metal batteries. Nat. Energy 2020, 5, 561–568.

[23]

Li, F.; He, J.; Liu, J. D.; Wu, M. G.; Hou, Y. Y.; Wang, H. P.; Qi, S. H.; Liu, Q. H.; Hu, J. W.; Ma, J. M. Gradient solid electrolyte interphase and lithium-ion solvation regulated by bisfluoroacetamide for stable lithium metal batteries. Angew. Chem., Int. Ed. 2021, 60, 6600–6608.

[24]

Krämer, E.; Schmitz, R.; Passerini, S.; Winter, M.; Schreiner, C. 1-Fluoropropane-2-one as SEI-forming additive for lithium-ion batteries. Electrochem. Commun. 2012, 16, 41–43.

[25]

Liu, Y. J.; Tao, X. Y.; Wang, Y.; Jiang, C.; Ma, C.; Sheng, O. W.; Lu, G. X.; Lou, X. W. Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 2022, 375, 739–745.

[26]

Umesh, B.; Rath, P. C.; Patra, J.; Hernandha, R. F. H.; Majumder, S. B.; Gao, X. P.; Bresser, D.; Passerini, S.; Lai, H. Z.; Chang, T. L. et al. High-Li+-fraction ether-side-chain pyrrolidinium-asymmetric imide ionic liquid electrolyte for high-energy-density Si//Ni-rich layered oxide Li-ion batteries. Chem. Eng. J. 2022, 430, 132693.

[27]

Wu, F. L.; Fang, S.; Kuenzel, M.; Mullaliu, A.; Kim, J. K.; Gao, X. P.; Diemant, T.; Kim, G. T.; Passerini, S. Dual-anion ionic liquid electrolyte enables stable Ni-rich cathodes in lithium-metal batteries. Joule 2021, 5, 2177–2194.

[28]

Qin, K. Q.; Holguin, K.; Khammadiroudbari, M.; Huang, J. H.; Kim, E. Y. S.; Hall, R.; Luo, C. Strategies in structure and electrolyte design for high-performance lithium metal batteries. Adv. Funct. Mater. 2021, 31, 2009694.

[29]

Gond, R.; van Ekeren, W.; Mogensen, R.; Naylor, A. J.; Younesi, R. Non-flammable liquid electrolytes for safe batteries. Mater. Horizons 2021, 8, 2913–2928.

[30]

Wang, Z. C.; Zhang, F. R.; Sun, Y. Y.; Zheng, L.; Shen, Y. B.; Fu, D. S.; Li, W. F.; Pan, A. R.; Wang, L.; Xu, J. J. et al. Intrinsically nonflammable ionic liquid-based localized highly concentrated electrolytes enable high-performance Li-metal batteries. Adv. Energy Mater. 2021, 11, 2003752.

[31]

Fan, X. L.; Wang, C. S. High-voltage liquid electrolytes for Li batteries: Progress and perspectives. Chem. Soc. Rev. 2021, 50, 10486–10566.

[32]

Wen, Z. Y.; Zhao, Z. K.; Li, L.; Sun, Z. Y.; Chen, N.; Li, Y. J.; Wu, F.; Chen, R. J. Study on the interfacial mechanism of bisalt polyether electrolyte for lithium metal batteries. Adv. Funct. Mater. 2022, 32, 2109184.

[33]

Li, H.; Du, Y. F.; Zhang, Q.; Zhao, Y.; Lian, F. A single-ion conducting network as rationally coordinating polymer electrolyte for solid-state Li metal batteries. Adv. Energy Mater. 2022, 12, 2103530.

[34]

Liang, J. W.; van der Maas, E.; Luo, J.; Li, X. N.; Chen, N.; Adair, K. R.; Li, W. H.; Li, J. J.; Hu, Y. F.; Liu, J. et al. A series of ternary metal chloride superionic conductors for high-performance all-solid-state lithium batteries. Adv. Energy Mater. 2022, 12, 2103921.

[35]

Cho, J. H.; Kim, K.; Chakravarthy, S.; Xiao, X. C.; Rupp, J. L. M.; Sheldon, B. W. An investigation of chemo-mechanical phenomena and Li metal penetration in all-solid-state lithium metal batteries using in situ optical curvature measurements. Adv. Energy Mater. 2022, 12, 2200369.

[36]

Chen, S. R.; Zheng, J. M.; Mei, D. H.; Han, K. S.; Engelhard, M. H.; Zhao, W. G.; Xu, W.; Liu, J.; Zhang, J. G. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 2018, 30, 1706102.

[37]

Liu, X.; Zarrabeitia, M.; Mariani, A.; Gao, X. P.; Schütz, H. M.; Fang, S.; Bizien, T.; Elia, G. A.; Passerini, S. Enhanced Li+ transport in ionic liquid-based electrolytes aided by fluorinated ethers for highly efficient lithium metal batteries with improved rate capability. Small Methods 2021, 5, 2100168.

[38]

Wahyudi, W.; Ladelta, V.; Tsetseris, L.; Alsabban, M. M.; Guo, X. R.; Yengel, E.; Faber, H.; Adilbekova, B.; Seitkhan, A.; Emwas, A. H. et al. Lithium-ion desolvation induced by nitrate additives reveals new insights into high performance lithium batteries. Adv. Functional Mater. 2021, 31, 2101593.

[39]

Park, S. H.; Jun, D.; Lee, G. H.; Lee, S. G.; Lee, Y. J. Toward high-performance anodeless batteries based on controlled lithium metal deposition: A review. J. Mater. Chem. A 2021, 9, 14656–14681.

[40]

Sun, C.; Dong, J.; Lu, X. D.; Li, Y. W.; Lai, C. Sol electrolyte: Pathway to long-term stable lithium metal anode. Adv. Funct. Mater. 2021, 31, 2100594.

[41]

Xia, L.; Miao, H.; Zhang, C. F.; Chen, G. Z.; Yuan, J. L. Review—Recent advances in non-aqueous liquid electrolytes containing fluorinated compounds for high energy density lithium-ion batteries. Energy Storage Mater. 2021, 38, 542–570.

[42]

Wang, H. P.; He, J.; Liu, J. D.; Qi, S. H.; Wu, M. G.; Wen, J.; Chen, Y. N.; Feng, Y. Z.; Ma, J. M. Electrolytes enriched by crown ethers for lithium metal batteries. Adv. Funct. Mater. 2020, 31, 2002578.

[43]

Li, X.; Liu, J. D.; He, J.; Wang, H. P.; Qi, S. H.; Wu, D. X.; Huang, J. D.; Li, F.; Hu, W.; Ma, J. M. Hexafluoroisopropyl trifluoromethanesulfonate-driven easily Li+ desolvated electrolyte to afford Li||NCM811 cells with efficient anode/cathode electrolyte interphases. Adv. Funct. Mater. 2021, 31, 2104395.

[44]

Ma, G. Q.; Wang, L.; Zhang, J. J.; Chen, H. C.; He, X. M.; Ding, Y. S. Lithium-ion battery electrolyte containing fluorinated solvent and additive. Progr. Chem. 2016, 28, 1299–1312.

[45]

Xu, N. B.; Shi, J. W.; Liu, G. P.; Yang, X. R.; Zheng, J. M.; Zhang, Z. R.; Yang, Y. Research progress of fluorine-containing electrolyte additives for lithium ion batteries. J. Power Sources Adv. 2021, 7, 100043.

[46]

Chen, J.; Fan, X. L.; Li, Q.; Yang, H. B.; Khoshi, M. R.; Xu, Y. B.; Hwang, S.; Chen, L.; Ji, X.; Yang, C. Y. et al. Electrolyte design for LiF-rich solid-electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 2020, 5, 386–397.

[47]

Deng, B. W.; Sun, D. M.; Wan, Q.; Wang, H.; Chen, T.; Li, X.; Qu, M. Z.; Peng, G. C. Review of electrolyte additives for ternary cathode lithium-ion battery. Acta Chim. Sin. 2018, 76, 259.

[48]

Xu, Z. X.; Yang, J.; Qian, J.; Zhang, T.; Nuli, Y.; Chen, R. J.; Wang, J. L. Bicomponent electrolyte additive excelling fluoroethylene carbonate for high performance Si-based anodes and lithiated Si-S batteries. Energy Storage Mater. 2019, 20, 388–394.

[49]

Cai, Y. C.; Zhang, Q.; Lu, Y.; Hao, Z. M.; Ni, Y. X.; Chen, J. An ionic liquid electrolyte with enhanced Li+ transport ability enables stable Li deposition for high-performance Li-O2 batteries. Angew. Chem., Int. Ed. 2021, 60, 25973–25980.

[50]

Pei, A.; Zheng, G. Y.; Shi, F. F.; Li, Y. Z.; Cui, Y. Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 2017, 17, 1132–1139.

[51]

Zhang, H.; Eshetu, G. G.; Judez, X.; Li, C. M.; Rodriguez-Martínez, L. M.; Armand, M. Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: Progress and perspectives. Angew. Chem., Int. Ed. 2018, 57, 15002–15027.

[52]

Pu, X. J.; Zhao, D.; Fu, C. L.; Chen, Z. X.; Cao, S. N.; Wang, C. S.; Cao, Y. L. Understanding and calibration of charge storage mechanism in cyclic voltammetry curves. Angew. Chem., Int. Ed. 2021, 60, 21310–21318.

[53]

Li, B.; Wang, Y. F.; Jiang, N.; An, L.; Song, J.; Zuo, Y. X.; Ning, F. H.; Shang, H. F.; Xia, D. G. Electrolytic-anion-redox adsorption pseudocapacitance in nanosized lithium-free transition metal oxides as cathode materials for Li-ion batteries. Nano Energy 2020, 72, 104727.

[54]

Wang, S.; Ma, W. J.; Zang, X. Y.; Ma, L. Z.; Tang, L.; Guo, J. X.; Liu, Q. Y.; Zhang, X. VS4-decorated carbon nanotubes for lithium storage with pseudocapacitance contribution. ChemSusChem 2019, 13, 1637–1644.

Nano Research
Pages 8425-8432
Cite this article:
Sun Z, Wen Z, Chen Y, et al. A gradient solid electrolyte interphase with high Li+ conductivity induced by bisfluoroacetamide additive for stable lithium metal batteries. Nano Research, 2023, 16(6): 8425-8432. https://doi.org/10.1007/s12274-022-5363-6
Topics:
Part of a topical collection:

9470

Views

7

Crossref

6

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 23 August 2022
Revised: 14 November 2022
Accepted: 02 December 2022
Published: 14 February 2023
© Tsinghua University Press 2022
Return