AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Application of SnOx/AC catalyst for the acetylene hydrochlorination

Ming Lu1,2Xue Yin2Qinqin Wang1Xunchao Zhang1,2Mingyuan Zhu1,2( )Bin Dai1( )
School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
College of Chemistry & Chemical Engineering, Yantai University, Yantai 264010, China
Show Author Information

Graphical Abstract

The catalytic performance of SnOx/activated carbon (AC) catalysts was evaluated for acetylene hydrochlorination, and the co-existence of SnO and SnO2 showed different adsorption energy for C2H2 and HCl.

Abstract

In this work, SnOx/activated carbon (AC) was synthesized by hydrothermal method, which was applied to acetylene hydrochlorination. Characterizations showed the SnOx nanoparticles were uniformly dispersed on the carbon, with the co-existence of SnO and SnO2. The acetylene conversion of SnOx/AC was 75%, much higher than that of SnCl4/AC. It was shown that the adsorption of reactants on SnOx was stronger than on SnCl4. Theoretical calculations showed the adsorption energies of reactants on SnOx were thermodynamically favorable and suggested that Sn4+ and Sn2+ in SnOx have different adsorption capacities for reactants. Through adjusting the valence ratio of SnOx, SnOx/AC O 4 h (O for oxidation) exhibited the best catalytic performance and had the strongest adsorption capacity for the reactants. However, the SnOx/AC catalyst was easily deactivated during acetylene hydrochlorination due to the loss of Sn. The doping of N effectively reduced the loss of Sn and improved the stability of the catalyst due to the anchoring effect of N on the SnOx particles.

Electronic Supplementary Material

Download File(s)
12274_2022_5365_MOESM1_ESM.pdf (952 KB)

References

[1]

Zhang, J. L.; Liu, N.; Li, W.; Dai, B. Progress on cleaner production of vinyl chloride monomers over non-mercury catalysts. Front. Chem. Sci. Eng. 2011, 5, 514–520.

[2]

Huang, C. F.; Zhu, M. Y.; Kang, L. H.; Li, X. Y.; Dai, B. Active carbon supported TiO2-AuCl3/AC catalyst with excellent stability for acetylene hydrochlorination reaction. Chem. Eng. J. 2014, 242, 69–75.

[3]

Shang, S. S.; Zhao, W.; Wang, Y.; Li, X. Y.; Zhang, J. L.; Han, Y.; Li, W. Highly efficient Ru@IL/AC to substitute mercuric catalyst for acetylene hydrochlorination. ACS Catal. 2017, 7, 3510–3520.

[4]

Conte, M.; Carley, A. F.; Heirene, C.; Willock, D. J.; Johnston, P.; Herzing, A. A.; Kiely, C. J.; Hutchings, G. J. Hydrochlorination of acetylene using a supported gold catalyst: A study of the reaction mechanism. J. Catal. 2007, 250, 231–239.

[5]

Kiyonori, S. The vapor-phase hidrochlorination of acetylene over metal chlorides supported on activated carbon. Chem. Lett. 1975, 4, 219–220.

[6]

Dai, B.; Li, X. Y.; Zhang, J. L.; Yu, F.; Zhu, M. Y. Application of mesoporous carbon nitride as a support for an Au catalyst for acetylene hydrochlorination. Chem. Eng. Sci. 2015, 135, 472–478.

[7]

Hutchings, G. J. Vapor phase hydrochlorination of acetylene: Correlation of catalytic activity of supported metal chloride catalysts. J. Catal. 1985, 96, 292–295.

[8]

Mitchenko, S. A.; Krasnyakova, T. V.; Mitchenko, R. S.; Korduban, A. N. Acetylene catalytic hydrochlorination over powder catalyst prepared by pre-milling of K2PtCl4 salt. J. Mol. Catal. A Chem. 2007, 275, 101–108.

[9]

Wang, B. L.; Yue, Y. X.; Jin, C. X.; Lu, J. Y.; Wang, S. S.; Yu, L.; Guo, L. L.; Li, R. R.; Hu, Z. T.; Pan, Z. Y. et al. Hydrochlorination of acetylene on single-atom Pd/N-doped carbon catalysts: Importance of pyridinic-N synergism. Appl. Catal. B Environ. 2020, 272, 118944.

[10]

Wang, X. L.; Lan, G. J.; Liu, H. Z.; Zhu, Y. H.; Li, Y. Effect of acidity and ruthenium species on catalytic performance of ruthenium catalysts for acetylene hydrochlorination. Catal. Sci. Technol. 2018, 8, 6143–6149.

[11]

Han, Y.; Wang, Y. L.; Wang, Y.; Hu, Y. B.; Nian, Y.; Li, W.; Zhang, J. L. Pyrrolidone ligand improved Cu-based catalysts with high performance for acetylene hydrochlorination. Appl. Organomet. Chem. 2020, 35, e6066.

[12]

Li, X. Y.; Nian, Y.; Shang, S. S.; Zhang, H. Y.; Zhang, J. L.; Han, Y.; Li, W. Novel nonmetal catalyst of supported tetraphenylphosphonium bromide for acetylene hydrochlorination. Catal. Sci. Technol. 2019, 9, 188–198.

[13]

Zhao, J.; Xu, J. T.; Xu, J. H.; Zhang, T. T.; Di, X. X.; Ni, J.; Li, X. N. Enhancement of Au/AC acetylene hydrochlorination catalyst activity and stability via nitrogen-modified activated carbon support. Chem. Eng. J. 2015, 262, 1152–1160.

[14]

Chen, X. F.; Li, H. X.; Dai, W. L.; Wang. J.; Ran, Y.; Qiao, M. H. Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over the Co-La-B/SiO2 amorphous catalyst and the promoting effect of La-dopant. Appl. Catal. A Gen. 2003, 253, 359–369.

[15]

Li, R. R.; Yue, Y. X.; Chen, Z.; Chen, X. L.; Wang, S. S.; Jiang, Z.; Wang, B. L.; Xu, Q. Q.; Han, D. M.; Zhao, J. Selective hydrogenation of acetylene over Pd-Sn catalyst: Identification of Pd2Sn intermetallic alloy and crystal plane-dependent performance. Appl. Catal. B Environ. 2020, 279, 119348.

[16]

Dong, Y. Z.; Zhang, H. Y.; Li, W.; Sun, M. X.; Guo, C. L.; Zhang J. L. Bimetallic Au-Sn/AC catalysts for acetylene hydrochlorination. J. Ind. Eng. Chem. 2016, 35, 177–184.

[17]

Wu, Y. B.; Li, F. X.; Xue, J. W.; Lv, Z. P. Sn-imidazolates supported on boron and nitrogen-doped activated carbon as novel catalysts for acetylene hydrochlorination. Chem. Eng. Commun. 2019, 207, 1203–1215.

[18]

Wu, Y. B.; Li, F. X.; Lv, Z. P.; Xue, J. W. Synthesis and characterization of X-MOF/AC (X = tin or copper) catalysts for the acetylene hydrochlorination. ChemistrySelect 2019, 4, 9403–9409.

[19]

Wu, Y. B.; Li, F. X.; Luo, X. Q.; Tian, G.; Feng, Y. X.; Han, Y. J.; Wang, L.; Chu, S. M.; Cao, Y. L.; Cao, K. S. et al. Tin-sulfur based catalysts for acetylene hydrochlorination. Turk. J. Chem. 2021, 45, 566–576.

[20]

Yao, Y.; Chang, C. Y.; Li, R. R.; Guo, D.; Liu, Z. X.; Pu, X.; Zhai, J. Y. Intrinsic catalytic sites-rich co-doped SnO2 nanoparticles enabling enhanced conversion and capture of polysulfides. Chem. Eng. J. 2022, 431, 134033.

[21]

Kocemba, I.; Rynkowski, J. M. The effect of oxygen adsorption on catalytic activity of SnO2 in CO oxidation. Catal. Today 2011, 169, 192–199.

[22]

Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 1994, 98, 11623–11627.

[23]

Vosko, S. H.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 1980, 58, 1200–1211.

[24]
Frisch, M. J.; Trucks, G. W.; Schlegel, J.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Schlegel, H. B.; Scalmani, G.; Barone, V.; Mennucci, B. et al. Gaussian 09, Revision C.01. Wallingford: Gaussian, Inc., 2010.
[25]

Petersson, G. A.; Bennett, A.; Tensfeldt, T. G.; Al-Laham, M. A.; Shirley, W. A.; Mantzaris, J. A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements. J. Chem. Phys. 1988, 89, 2193–2218.

[26]

Petersson, G. A.; Al-Laham, M. A. A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. J. Chem. Phys. 1991, 94, 6081–6090.

[27]

Hay, P. J.; Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 1985, 82, 270–283.

[28]

Wadt, W. R.; Hay, P. J. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys. 1985, 82, 284–298.

[29]

Hay, P. J.; Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 1985, 82, 299–310.

[30]

Barreira, E. V.; Pedrini, L. F. K.; Boratto, M. H.; Scalvi, L. V. A. A dynamic time–temperature-dependent process for thermal oxidation of Sn leading to SnOx thin films: Impedance spectroscopy study. Int. J. Mod. Phys. B 2020, 34, 2050184.

[31]

Gu, J.; Héroguel, F.; Luterbacher, J.; Hu, X. L. Densely packed, ultra small SnO nanoparticles for enhanced activity and selectivity in electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2018, 11, 2993–2997.

[32]

Tao, B. L.; Yan, Z. F. In-situ synthesis of highly efficient visible light driven stannic oxide/graphitic carbon nitride heterostructured photocatalysts. J. Colloid Interface Sci. 2016, 480, 118–125.

[33]

Deng, P. M.; Wei, G. G.; Fang, Z. Q.; Ning, H. L.; Liang, Z. H.; Zhang, X.; Yuan, W. J.; Wang, Y. P.; Yao, R. H.; Peng, J. B. Sol-gel synthesis of large-sized polycrystalline stannous oxide and its oxidation behavior. CrystEngComm 2020, 22, 1834–1838.

[34]

Shih, P. Y. Effect of CuO on the properties of stannous chlorophosphate glasses. J. Non-Cryst. Solids 2003, 315, 211–218.

[35]

Wang, J.; Deng, B. L.; Chen, H.; Wang, X. R.; Zheng, J. Z. Removal of aqueous Hg(II) by polyaniline: Sorption characteristics and mechanisms. Environ. Sci. Technol. 2009, 43, 5223–5228.

[36]

Li, H.; Wu, B. T.; Wang, J. H.; Wang, F. M.; Zhang, X. B.; Wang, G.; Li, H. C. Efficient and stable Ru(III)-choline chloride catalyst system with low Ru content for non-mercury acetylene hydrochlorination. Chin. J. Catal. 2018, 39, 1770–1781.

[37]

Pan, S. S.; Wang, S.; Zhang, Y. X.; Luo, Y. Y.; Kong, F. Y.; Xu, S. C.; Xu, J. M.; Li, G. H. P-type conduction in nitrogen-doped SnO2 films grown by thermal processing of tin nitride films. Appl. Phys. A 2012, 109, 267–271.

[38]

Kim, Y.; Kim, S. P.; Kim, S. D.; Kim, S. E. Nitrogen-doped transparent tin oxide thin films deposited by sputtering. Curr. Appl. Phys. 2011, 11, S139–S142.

[39]

Inoue, Y.; Nomiya, M.; Takai, O. Physical properties of reactive sputtered tin-nitride thin films. Vacuum 1998, 51, 673–676.

[40]

Xu, J.; Mu, Y. K.; Ruan, C. H.; Li, P. X.; Xie, Y. B. S or N-monodoping and S,N-codoping effect on electronic structure and electrochemical performance of tin dioxide: Simulation calculation and experiment validation. Electrochim. Acta 2020, 340, 135950.

Nano Research
Pages 6577-6583
Cite this article:
Lu M, Yin X, Wang Q, et al. Application of SnOx/AC catalyst for the acetylene hydrochlorination. Nano Research, 2023, 16(5): 6577-6583. https://doi.org/10.1007/s12274-022-5365-4
Topics:

6704

Views

2

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 11 September 2022
Revised: 02 November 2022
Accepted: 30 November 2022
Published: 13 March 2023
© Tsinghua University Press 2022
Return