AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Multi-attribute wearable pressure sensor based on multilayered modulation with high constant sensitivity over a wide range

Ning Li1,2,§Song Gao1,2,§Yang Li1,2( )Jianwen Liu1,2Wenhao Song4Guozhen Shen3( )
School of Information Science and Engineering, University of Jinan, Jinan 250022, China
Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan 250022, China
School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
School of Aeronautical and Astronautical Engineering Purdue University, West Lafayette, IN 47907, USA

§ Ning Li and Song Gao contributed equally to this work.

Show Author Information

Graphical Abstract

A breathable, biocompatible, and biodegradable wearable piezoresistive pressure sensor based on multilayered modulation with high constant sensitivity over a wide range is proposed and reported, enabling the high-sensitivity detection of monitoring versatile human vital physiological signals. In light of the superior sensing performance, an integrated sensor array system that can locate objects’ positions is constructed and applied to simulate sitting posture monitoring.

Abstract

Flexible pressure sensors capable of monitoring diverse physiological signals and body movements have garnered tremendous attention in wearable electronic devices. Thereinto, high constant sensitivity over a wide pressure range combined with breathability, biocompatibility, and biodegradability is pivotal for manufacturing of reliable pressure sensors in practical sensing applications. In this work, inspired by the multilayered structure of skin epidermis, we propose and demonstrate a multi-attribute wearable piezoresistive pressure sensor consisting of multilayered gradient conductive poly(ε-caprolactone) nanofiber membranes composites. In response to externally applied pressure, a layer-by-layer current path is activated inside the multilayered membranes composites, leading to the most salient sensing performance of high constant sensitivity of 33.955 kPa−1 within the pressure range of 0–80 kPa. The proposed pressure sensor also exhibits a fast response–relaxation time, a low detection limit, and excellent stability, which can be successfully used to measure human physiological signals. Lastly, an integrated sensor array system that can locate objects’ positions is constructed and applied to simulate sitting posture monitoring. These results indicate that the proposed pressure sensor holds great potential in health monitoring and wearable electronic devices.

Electronic Supplementary Material

Video
12274_2022_5371_MOESM2_ESM.mp4
Download File(s)
12274_2022_5371_MOESM1_ESM.pdf (1.1 MB)

References

[1]

Yang, J. C.; Mun, J.; Kwon, S. Y.; Park, S.; Bao, Z. N.; Park, S. Electronic skin: Recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 2019, 31, 1904765.

[2]

Lin, X. Z.; Li, F.; Bing, Y.; Fei, T.; Liu, S.; Zhao, H. R.; Zhang, T. Biocompatible multifunctional e-skins with excellent self-healing ability enabled by clean and scalable fabrication. Nano-Micro Lett. 2021, 13, 200.

[3]

Wang, L.; Zhang, M. Y.; Yang, B.; Tan, J. J.; Ding, X. Y. Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti3AlC2 MXene composite aerogel for sensitive pressure sensor. ACS Nano 2020, 14, 10633–10647.

[4]

Yin, F. F.; Guo, Y. J.; Li, H.; Yue, W. J.; Zhang, C. W.; Chen, D.; Geng, W.; Li, Y.; Gao, S.; Shen, G. Z. A waterproof and breathable Cotton/rGO/CNT composite for constructing a layer-by-layer structured multifunctional flexible sensor. Nano Res. 2022, 15, 9341–9351.

[5]

Oh, H.; Yi, G. C.; Yip, M.; Dayeh, S. A. Scalable tactile sensor arrays on flexible substrates with high spatiotemporal resolution enabling slip and grip for closed-loop robotics. Sci. Adv. 2020, 6, eabd7795.

[6]

Jin, T.; Sun, Z. D.; Li, L.; Zhang, Q.; Zhu, M. L.; Zhang, Z. X.; Yuan, G. J.; Chen, T.; Tian, Y. Z.; Hou, X. Y. et al. Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nat. Commun. 2020, 11, 5381.

[7]

Chen, J.; Han, K.; Luo, J. J.; Xu, L.; Tang, W.; Wang, Z. L. Soft robots with self-powered configurational sensing. Nano Energy 2020, 77, 105171.

[8]

Luo, S.; Zhou, X.; Tang, X. Y.; Li, J. L.; Wei, D. C.; Tai, G. J.; Chen, Z. Y.; Liao, T. M.; Fu, J. T.; Wei, D. P. et al. Microconformal electrode-dielectric integration for flexible ultrasensitive robotic tactile sensing. Nano Energy 2021, 80, 105580.

[9]

Pyo, S.; Lee, J.; Bae, K.; Sim, S.; Kim, J. Recent progress in flexible tactile sensors for human-interactive systems: From sensors to advanced applications. Adv. Mater. 2021, 33, 2005902.

[10]

Niu, H. S.; Li, H.; Gao, S.; Li, Y.; Wei, X.; Chen, Y. K.; Yue, W. J.; Zhou, W. J.; Shen, G. Z. Perception-to-cognition tactile sensing based on artificial-intelligence-motivated human full-skin bionic electronic skin. Adv. Mater. 2022, 34, 2202622.

[11]

Wei, X.; Li, H.; Yue, W. J.; Gao, S.; Chen, Z. X.; Li, Y.; Shen, G. Z. A high-accuracy, real-time, intelligent material perception system with a machine-learning-motivated pressure-sensitive electronic skin. Matter 2022, 5, 1481–1501.

[12]

Zhu, P. C.; Zhang, B. S.; Wang, H. Y.; Wu, Y. H.; Cao, H. J.; He, L. B.; Li, C. Y.; Luo, X. P.; Li, X.; Mao, Y. C. 3D printed triboelectric nanogenerator as self-powered human-machine interactive sensor for breathing-based language expression. Nano Res. 2022, 15, 7460–7467.

[13]

Guo, Y. J.; Li, H.; Li, Y.; Wei, X.; Gao, S.; Yue, W. J.; Zhang, C. W.; Yin, F. F.; Zhao, S. F.; Kim, N. Y. et al. Wearable hybrid device capable of interactive perception with pressure sensing and visualization. Adv. Funct. Mater. 2022, 32, 2203585.

[14]

Ghosh, R.; Song, M. S.; Park, J. B.; Tchoe, Y.; Guha, P.; Lee, W.; Lim, Y.; Kim, B.; Kim, S. W.; Kim, M. et al. Fabrication of piezoresistive Si nanorod-based pressure sensor arrays: A promising candidate for portable breath monitoring devices. Nano Energy 2021, 80, 105537.

[15]

Cheng, Y. F.; Ma, Y. A.; Li, L. Y.; Zhu, M.; Yue, Y.; Liu, W. J.; Wang, L. F.; Jia, S. F.; Li, C.; Qi, T. Y. et al. Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor. ACS Nano 2020, 14, 2145–2155.

[16]

Ha, K. H.; Zhang, W. Y.; Jang, H.; Kang, S.; Wang, L.; Tan, P.; Hwang, H.; Lu, N. S. Highly sensitive capacitive pressure sensors over a wide pressure range enabled by the hybrid responses of a highly porous nanocomposite. Adv. Mater. 2021, 33, 2103320.

[17]

Amoli, V.; Kim, J. S.; Kim, S. Y.; Koo, J.; Chung, Y. S.; Choi, H.; Kim, D. H. Ionic tactile sensors for emerging human-interactive technologies: A review of recent progress. Adv. Funct. Mater. 2020, 30, 1904532.

[18]

Niu, H. S.; Gao, S.; Yue, W. J.; Li, Y.; Zhou, W. J.; Liu, H. Highly morphology-controllable and highly sensitive capacitive tactile sensor based on epidermis-dermis-inspired interlocked asymmetric-nanocone arrays for detection of tiny pressure. Small 2020, 16, 1904774.

[19]

Gupta, K.; Brahma, S.; Dutta, J.; Rao, B.; Liu, C. P. Recent progress in microstructure development of inorganic one-dimensional nanostructures for enhancing performance of piezotronics and piezoelectric nanogenerators. Nano Energy 2019, 55, 1–21.

[20]

Mo, X. W.; Zhou, H.; Li, W. B.; Xu, Z. S.; Duan, J. J.; Huang, L.; Hu, B.; Zhou, J. Piezoelectrets for wearable energy harvesters and sensors. Nano Energy 2019, 65, 104033.

[21]

Wang, J.; Jiang, J. F.; Zhang, C. C.; Sun, M. Y.; Han, S. W.; Zhang, R. T.; Liang, N.; Sun, D. H.; Liu, H. Energy-efficient, fully flexible, high-performance tactile sensor based on piezotronic effect: Piezoelectric signal amplified with organic field-effect transistors. Nano Energy 2020, 76, 105050.

[22]

Jiang, J. X.; Guan, Q. B.; Liu, Y. N.; Sun, X. H.; Wen, Z. Abrasion and fracture self-healable triboelectric nanogenerator with ultrahigh stretchability and long-term durability. Adv. Funct. Mater. 2021, 31, 2105380.

[23]

Kim, W. G.; Kim, D. W.; Tcho, I. W.; Kim, J. K.; Kim, M. S.; Choi, Y. K. Triboelectric nanogenerator: Structure, mechanism, and applications. ACS Nano 2021, 15, 258–287.

[24]

Zheng, N.; Xue, J. H.; Jie, Y.; Cao, X.; Wang, Z. L. Wearable and humidity-resistant biomaterials-based triboelectric nanogenerator for high entropy energy harvesting and self-powered sensing. Nano Res. 2022, 15, 6213–6219.

[25]

Yang, T.; Deng, W. L.; Chu, X.; Wang, X.; Hu, Y. T.; Fan, X.; Song, J.; Gao, Y. Y.; Zhang, B. B.; Tian, G. et al. Hierarchically microstructure-bioinspired flexible piezoresistive bioelectronics. ACS Nano 2021, 15, 11555–11563.

[26]

Yan, J. F.; Ma, Y. N.; Jia, G.; Zhao, S. R.; Yue, Y.; Cheng, F.; Zhang, C. K.; Cao, M. L.; Xiong, Y. C.; Shen, P. Z. et al. Bionic MXene based hybrid film design for an ultrasensitive piezoresistive pressure sensor. Chem. Eng. J. 2022, 431, 133458.

[27]

Min, P.; Li, X. F.; Liu, P. F.; Liu, J.; Jia, X. Q.; Li, X. P.; Yu, Z. Z. Rational design of soft yet elastic lamellar graphene aerogels via bidirectional freezing for ultrasensitive pressure and bending sensors. Adv. Funct. Mater. 2021, 31, 2103703.

[28]

Lee, Y.; Myoung, J.; Cho, S.; Park, J.; Kim, J.; Lee, H.; Lee, Y.; Lee, S.; Baig, C.; Ko, H. Bioinspired gradient conductivity and stiffness for ultrasensitive electronic skins. ACS Nano 2021, 15, 1795–1804.

[29]

Song, Z. Q.; Li, W. Y.; Kong, H. J.; Chen, M. Q.; Bao, Y.; Wang, N.; Wang, W.; Liu, Z. B.; Ma, Y. M.; He, Y. et al. Merkel receptor-inspired integratable and biocompatible pressure sensor with linear and ultrahigh sensitive response for versatile applications. Chem. Eng. J. 2022, 444, 136481.

[30]

Sharma, S.; Chhetry, A.; Maharjan, P.; Zhang, S. P.; Shrestha, K.; Sharifuzzaman, M.; Bhatta, T.; Shin, Y.; Kim, D.; Lee, S. et al. Polyaniline-nanospines engineered nanofibrous membrane based piezoresistive sensor for high-performance electronic skins. Nano Energy 2022, 95, 106970.

[31]

Ma, C.; Xu, D.; Huang, Y. C.; Wang, P. Q.; Huang, J.; Zhou, J. Y.; Liu, W. F.; Li, S. T.; Huang, Y.; Duan, X. F. Robust flexible pressure sensors made from conductive micropyramids for manipulation tasks. ACS Nano 2020, 14, 12866–12876.

[32]

Zhong, M. J.; Zhang, L. J.; Liu, X.; Zhou, Y. N.; Zhang, M. Y.; Wang, Y. J.; Yang, L.; Wei, D. Wide linear range and highly sensitive flexible pressure sensor based on multistage sensing process for health monitoring and human−machine interfaces. Chem. Eng. J. 2021, 412, 128649.

[33]

Guan, H.; Meng, J. W.; Cheng, Z. Y.; Wang, X. Q. Processing natural wood into a high-performance flexible pressure sensor. ACS Appl. Mater. Interfaces 2020, 12, 46357–46365.

[34]

Yu, T. T.; Zhang, D. G.; Wu, Y. L.; Guo, S. Z.; Lei, F.; Li, Y.; Yang, J. Y. Graphene foam pressure sensor based on fractal electrode with high sensitivity and wide linear range. Carbon 2021, 182, 497–505.

[35]

Qin, Z. H.; Sun, X.; Yu, Q. Y.; Zhang, H. T.; Wu, X. J.; Yao, M. M.; Liu, W. W.; Yao, F. L.; Li, J. J. Carbon nanotubes/hydrophobically associated hydrogels as ultrastretchable, highly sensitive, stable strain, and pressure sensors. ACS Appl. Mater. Interfaces 2020, 12, 4944–4953.

[36]

Sun, J. Z.; Du, H.; Chen, Z. J.; Wang, L. L.; Shen, G. Z. MXene quantum dot within natural 3D watermelon peel matrix for biocompatible flexible sensing platform. Nano Res. 2022, 15, 3653–3659.

[37]

Tang, Z. H.; Jia, S. H.; Zhou, C. H.; Li, B. 3D printing of highly sensitive and large-measurement-range flexible pressure sensors with a positive piezoresistive effect. ACS Appl. Mater. Interfaces 2020, 12, 28669–28680.

[38]

Du, Q. F.; Liu, L. L.; Tang, R. T.; Ai, J.; Wang, Z. J.; Fu, Q. Q.; Li, C. X.; Chen, Y.; Feng, X. High-performance flexible pressure sensor based on controllable hierarchical microstructures by laser scribing for wearable electronics. Adv. Mater. Technol. 2021, 6, 2100122.

[39]

Chen, B. D.; Zhang, L.; Li, H. Q.; Lai, X. J.; Zeng, X. R. Skin-inspired flexible and high-performance MXene@polydimethylsiloxane piezoresistive pressure sensor for human motion detection. J. Colloid Interface Sci. 2022, 617, 478–488.

[40]

Wei, Q. K.; Chen, G. R.; Pan, H.; Ye, Z. B.; Au, C.; Chen, C. X.; Zhao, X.; Zhou, Y. H.; Xiao, X.; Tai, H. L. et al. MXene-sponge based high-performance piezoresistive sensor for wearable biomonitoring and real-time tactile sensing. Small Methods 2022, 6, 2101051.

[41]

Zhu, G. T.; Dai, H. T.; Yao, Y.; Tang, W. L.; Shi, J. P.; Yang, J. Q.; Zhu, L. Y. 3D printed skin-inspired flexible pressure sensor with gradient porous structure for tunable high sensitivity and wide linearity range. Adv. Mater. Technol. 2022, 7, 2101239.

[42]

Qu, C.; Zhao, P.; Wu, C. D.; Zhuang, Y.; Liu, J. M.; Li, W. H.; Liu, Z.; Liu, J. H. Electrospun PAN/PANI fiber film with abundant active sites for ultrasensitive trimethylamine detection. Sens. Actuators B: Chem. 2021, 338, 129822.

[43]

Sharma, S.; Chhetry, A.; Zhang, S. P.; Yoon, H.; Park, C.; Kim, H.; Sharifuzzaman, M.; Hui, X.; Park, J. Y. Hydrogen-bond-triggered hybrid nanofibrous membrane-based wearable pressure sensor with ultrahigh sensitivity over a broad pressure range. ACS Nano 2021, 15, 4380–4393.

[44]

Yue, O. Y.; Wang, X. C.; Liu, X. H.; Hou, M. D.; Zheng, M. H.; Wang, Y. Y.; Cui, B. Q. Spider-web and ant-tentacle doubly bio-inspired multifunctional self-powered electronic skin with hierarchical nanostructure. Adv. Sci. 2021, 8, 2004377.

[45]

Li, Y. M.; Li, X.; Zhao, R.; Wang, C. Y.; Qiu, F. P.; Sun, B. L.; Ji, H.; Qiu, J.; Wang, C. Enhanced adhesion and proliferation of human umbilical vein endothelial cells on conductive PANI-PCL fiber scaffold by electrical stimulation. Mater. Sci. Eng.: C 2017, 72, 106–112.

[46]

Ma, M.; Djanashvili, K.; Smith, W. A. Selective electrochemical reduction of CO2 to CO on CuO-derived Cu nanowires. Phys. Chem. Chem. Phys. 2015, 17, 20861–20867.

Nano Research
Pages 7583-7592
Cite this article:
Li N, Gao S, Li Y, et al. Multi-attribute wearable pressure sensor based on multilayered modulation with high constant sensitivity over a wide range. Nano Research, 2023, 16(5): 7583-7592. https://doi.org/10.1007/s12274-022-5371-6
Topics:

7523

Views

19

Crossref

17

Web of Science

19

Scopus

1

CSCD

Altmetrics

Received: 03 September 2022
Revised: 27 November 2022
Accepted: 02 December 2022
Published: 16 February 2023
© Tsinghua University Press 2022
Return