AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Comparison of extruded cell nanovesicles and exosomes in their molecular cargos and regenerative potentials

Xianyun Wang1,2,3,4,5,6Shiqi Hu5,6Dashuai Zhu5,6Junlang Li5,6Ke Cheng5,6( )Gang Liu1,3,4( )
Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang 050000, China
Scientific Research Data Center, The First Hospital of Hebei Medical University, Shijiazhuang 050000, China
Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang 050000, China
Hebei International Joint Research Center for Structural Heart Disease, Shijiazhuang 050000, China
Department of Molecular Biomedical Science, North Carolina State University, Raleigh 27607, North Carolina, USA
Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh 27607, North Carolina, USA
Show Author Information

Graphical Abstract

Systematic comparison analysis of mesenchymal stem cell (MSC) derived nanovesicles (NVs) (from extrusion) and extracellular vesicles (EVs) (from natural secretion) was performed in this study.

Abstract

Extracellular vesicles (EVs) generated from mesenchymal stem cells (MSCs) play an essential role in modulating cell–cell communication and tissue regeneration. The clinical translation of EVs is constrained by the poor yield of EVs. Extrusion has recently become an effective technique for producing a large scale of nanovesicles (NVs). In this study, we systematically compared MSC NVs (from extrusion) and EVs (from natural secretion). Proteomics and RNA sequencing data revealed that NVs resemble MSCs more closely than EVs. Additionally, microRNAs in NVs are related to cardiac repair, fibrosis repression, and angiogenesis. Lastly, intravenous delivery of MSC NVs improved heart repair and cardiac function in a mouse model of myocardial infarction.

Electronic Supplementary Material

Download File(s)
12274_2022_5374_MOESM1_ESM.pdf (1,000.1 KB)

References

[1]

Harting, M. T.; Jimenez, F.; Cox. Jr. C. S. The pulmonary first-pass effect, xenotransplantation and translation to clinical trials—A commentary. Brain 2008, 131, e100.

[2]

Fischer, U. M.; Harting, M. T.; Jimenez, F.; Monzon-Posadas, W. O.; Xue, H.; Savitz, S. I.; Laine, G. A.; Cox. Jr. C. S. Pulmonary passage is a major obstacle for intravenous stem cell delivery: The pulmonary first-pass effect. Stem Cells Dev. 2009, 18, 683–692.

[3]

Leibacher, J.; Henschler, R. Biodistribution. migration and homing of systemically applied mesenchymal stem/stromal cells. Stem Cell Res. Ther. 2016, 7, 7.

[4]

Barbash, I. M.; Chouraqui, P.; Baron, J.; Feinberg, M. S.; Etzion, S.; Tessone, A.; Miller, L.; Guetta, E.; Zipori, D.; Kedes, L. H. et al. Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: Feasibility, cell migration, and body distribution. Circulation 2003, 108, 863–868.

[5]

Adamiak, M.; Sahoo. S. Exosomes in myocardial repair: Advances and challenges in the development of next-generation therapeutics. Mol. Ther. 2018, 26, 1635–1643.

[6]

Balbi, C.; Vassalli. G. Exosomes: Beyond stem cells for cardiac protection and repair. Stem Cells 2020, 38, 1387–1399.

[7]

Wang, Y. L.; Xie, W. P.; Liu, B.; Huang, H.; Luo, W.; Zhang, Y.; Pan, X. B.; Yu, X. Y.; Shen, Z. Y.; Li. Y. X. Stem cell-derived exosomes repair ischemic muscle injury by inhibiting the tumor suppressor Rb1-mediated NLRP3 inflammasome pathway. Signal Transduct. Target. Ther. 2021, 6, 121.

[8]

Wang, X. Y.; Tang, Y. D.; Liu, Z.; Yin, Y. J.; Li, Q. H.; Liu, G.; Yan. B. Y. The application potential and advance of mesenchymal stem cell-derived exosomes in myocardial infarction. Stem Cells Int. 2021, 2021, 5579904.

[9]

Popowski, K. D.; de Juan Abad, B. L.; George, A.; Silkstone, D.; Belcher, E.; Chung, J.; Ghodsi, A.; Lutz, H.; Davenport, J.; Flanagan, M. et al. Inhalable exosomes outperform liposomes as mRNA and protein drug carriers to the lung. Extracell. Vesicle 2022, 1, 100002.

[10]

Wang, X.; Zhu, Y. H.; Wu, C. C.; Liu, W. N.; He, Y. J.; Yang. Q. Adipose-derived mesenchymal stem cells-derived exosomes carry microRNA-671 to alleviate myocardial infarction through inactivating the TGFBR2/Smad2 axis. Inflammation 2021, 44, 1815–1830.

[11]
Mathiyalagan, P.; Sahoo, S. Exosomes-based gene therapy for microRNA delivery. In Cardiac Gene Therapy. Ishikawa, K. , Ed.; Humana Press: New York, 2017; pp 139–152.
[12]

Qiao, L.; Hu, S. Q.; Liu, S. Y.; Zhang, H.; Ma, H.; Huang, K.; Li, Z. H.; Su, T.; Vandergriff, A.; Tang, J. N. et al. MicroRNA-21-5p dysregulation in exosomes derived from heart failure patients impairs regenerative potential. J. Clin. Invest. 2019, 129, 2237–2250.

[13]

Zhu, D. S.; Liu, S.; Huang, K.; Wang, Z. Z.; Hu, S. Q.; Li, J. L.; Li, Z. H.; Cheng. K. Intrapericardial exosome therapy dampens cardiac injury via activating Foxo3. Circ. Res. 2022, 131, e135–e150.

[14]

Vaka, R.; Van Remortel, S.; Ly, V.; Davis. D. R. Extracellular vesicle therapy for non-ischemic heart failure: A systematic review of preclinical studies. Extracell. Vesicle 2022, 1, 100009.

[15]

Debbi, L.; Guo, S. W.; Safina, D.; Levenberg. S. Boosting extracellular vesicle secretion. Biotechnol. Adv. 2022, 59, 107983.

[16]

Lee, J. H.; Ha, D. H.; Go, H. K.; Youn, J.; Kim, H. K.; Jin, R. C.; Miller, R. B.; Kim, D. H.; Cho, B. S.; Yi, Y. W. Reproducible large-scale isolation of exosomes from adipose tissue-derived mesenchymal stem/stromal cells and their application in acute kidney injury. Int. J. Mol. Sci. 2020, 21, 4774.

[17]

Z. Q.; Shi, J. F.; Xie, J.; Wang, Y. F.; Sun, J. Y.; Liu, T. Z.; Zhao, Y. R.; Zhao, X. T.; Wang, X. M.; Ma, Y. F. et al. Large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation. Nat. Biomed. Eng. 2020, 4, 69–83.

[18]

Ilahibaks, N. F.; Lei, Z. Y.; Mol, E. A.; Deshantri, A. K.; Jiang, L. L.; Schiffelers, R. M.; Vader, P.; Sluijter. J. P. G. Biofabrication of cell-derived nanovesicles: A potential alternative to extracellular vesicles for regenerative medicine. Cells 2019, 8, 1509.

[19]

Jang, S. C.; Kim, O. Y.; Yoon, C. M.; Choi, D. S.; Roh, T. Y.; Park, J.; Nilsson, J.; Lötvall, J.; Kim, Y. K.; Gho. Y. S. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano 2013, 7, 7698–7710.

[20]

Wang, X. Y.; Hu, S. Q.; Li, J. L.; Zhu, D. S.; Wang, Z. Z.; Cores, J.; Cheng, K.; Liu, G.; Huang, K. Extruded mesenchymal stem cell nanovesicles are equally potent to natural extracellular vesicles in cardiac repair. ACS Appl. Mater. Interfaces 2021, 13, 55767–55779.

[21]
Popowski, K. D.; Moatti, A. ; Scull, G.; Silkstone, D.; Lutz, H. ; de Juan Abad, B. L.; George, A.; Belcher, E.; Zhu, D. S.; Mei, X. et al. Inhalable dry powder mRNA vaccines based on extracellular vesicles. Matter 2022, 5, 2960–2974.
[22]

Wen, Y.; Fu, Q.; Soliwoda, A.; Zhang, S.; Zheng, M. F.; Mao, W. J.; Wan. Y. Cell-derived nanovesicles prepared by membrane extrusion are good substitutes for natural extracellular vesicles. Extracell. Vesicle 2022, 1, 100004.

[23]

Skotland, T.; Sandvig, K.; Llorente. A. Lipids in exosomes: Current knowledge and the way forward. Prog. Lipid Res. 2017, 66, 30–41.

[24]

Arslan, F.; Lai, R. C.; Smeets, M. B.; Akeroyd, L.; Choo, A.; Aguor, E. N. E.; Timmers, L.; van Rijen, H. V.; Doevendans, P. A.; Pasterkamp, G. et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res. 2013, 10, 301–312.

[25]

Liu, Z.; Xu, Y. Q.; Wan, Y. G.; Gao, J.; Chu, Y. Y.; Li. J. Exosomes from adipose-derived mesenchymal stem cells prevent cardiomyocyte apoptosis induced by oxidative stress. Cell Death Discov. 2019, 5, 79.

[26]

Zhou, T.; Yuan, Z. N.; Weng, J. Y.; Pei, D. Q.; Du, X.; He, C.; Lai. P. L. Challenges and advances in clinical applications of mesenchymal stromal cells. J. Hematol. Oncol. 2021, 14, 24.

[27]

Brown, C.; McKee, C.; Bakshi, S.; Walker, K.; Hakman, E.; Halassy, S.; Svinarich, D.; Dodds, R.; Govind, C. K.; Chaudhry. G. R. Mesenchymal stem cells: Cell therapy and regeneration potential. J. Tissue Eng. Regen. Med. 2019, 13, 1738–1755.

[28]

Allan, D.; Tieu, A.; Lalu, M.; Burger. D. Mesenchymal stromal cell-derived extracellular vesicles for regenerative therapy and immune modulation: Progress and challenges toward clinical application. Stem Cells Transl. Med. 2020, 9, 39–46.

[29]
Khan, M.; Kishore, R. Stem cell exosomes: Cell-freetherapy for organ repair. In Adult Stem Cells. Di Nardo, P.; Dhingra, S.; Singla, D. K. , Eds.; Humana Press: New York, 2017; pp 315–321.
[30]

Martin-Rendon, E.; Brunskill, S. J.; Hyde, C. J.; Stanworth, S. J.; Mathur, A.; Watt. S. M. Autologous bone marrow stem cells to treat acute myocardial infarction: A systematic review. Eur. Heart J. 2008, 29, 1807–1818.

[31]

Cheng, G.; Li, W. Q.; Ha, L.; Han, X. H.; Hao, S. J.; Wan, Y.; Wang, Z. Q.; Dong, F. P.; Zou, X.; Mao, Y. W. et al. Self-assembly of extracellular vesicle-like metal-organic framework nanoparticles for protection and intracellular delivery of biofunctional proteins. J. Am. Chem. Soc. 2018, 140, 7282–7291.

[32]

Liu, J. W.; Jiang, M.; Deng, S. Q.; Lu, J. D.; Huang, H.; Zhang, Y.; Gong, P. H.; Shen, X. M.; Ruan, H. J.; Jin, M. M. et al. MiR-93-5p-containing exosomes treatment attenuates acute myocardial infarction-induced myocardial damage. Mol. Ther. Nucleic Acids 2018, 11, 103–115.

[33]

Zhou, Y.; Richards, A. M.; Wang, P. P. MicroRNA-221 is cardioprotective and anti-fibrotic in a rat model of myocardial infarction. Mol. Ther. Nucleic Acids 2019, 17, 185–197.

[34]

K.; Serpooshan, V.; Hurtado, C.; Diez-Cuñado, M.; Zhao, M. M.; Maruyama, S.; Zhu, W. H.; Fajardo, G.; Noseda, M.; Nakamura, K. et al. Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature 2015, 525, 479–485.

[35]

Wong, L. L.; Saw, E. L.; Lim, J. Y.; Zhou, Y.; Richards, A. M.; Wang. P. P. MicroRNA Let-7d-3p contributes to cardiac protection via targeting HMGA2. Int. J. Mol. Sci. 2019, 20, 1522.

[36]

Kim, H. Y.; Bhang. S. H. Stem cell-engineered nanovesicles exert proangiogenic and neuroprotective effects. Materials 2021, 14, 1078.

[37]

Mulcahy, L. A.; Pink, R. C.; Carter. D. R. F. Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles 2014, 3, 24641.

[38]

Jurgielewicz, B. J.; Yao, Y.; Stice. S. L. Kinetics and specificity of HEK293T extracellular vesicle uptake using imaging flow cytometry. Nanoscale Res. Lett. 2020, 15, 170.

[39]

Esmaeili, A.; Alini, M.; Eslaminejad, M. B.; Hosseini. S. Engineering strategies for customizing extracellular vesicle uptake in a therapeutic context. Stem Cell Res. Ther. 2022, 13, 129.

[40]

Sancho-Albero, M.; Navascués, N.; Mendoza, G.; Sebastián, V.; Arruebo, M.; Martín-Duque, P.; Santamaría. J. Exosome origin determines cell targeting and the transfer of therapeutic nanoparticles towards target cells. J. Nanobiotechnol. 2019, 17, 16.

[41]

Zech, D.; Rana, S.; Büchler, M. W.; Zöller. M. Tumor-exosomes and leukocyte activation: An ambivalent crosstalk. Cell Commun. Signal. 2012, 10, 37.

[42]

Caponnetto, F.; Manini, I.; Skrap, M.; Palmai-Pallag, T.; Di Loreto, C.; Beltrami, A. P.; Cesselli, D.; Ferrari. E. Size-dependent cellular uptake of exosomes. Nanomedicine:Nanotechnol. Biol. Med. 2017, 13, 1011–1020.

[43]

Wang, H.; Agarwal, P.; Zhao, S. T.; Yu, J. H.; Lu, X. B.; He. X. M. A near-infrared laser-activated “nanobomb” for breaking the barriers to microRNA delivery. Adv. Mater. 2016, 28, 347–355.

[44]

Xu, J. S.; Liu, Y. H.; Li, Y. J.; Wang, H.; Stewart, S.; Van der Jeught, K.; Agarwal, P.; Zhang, Y. T.; Liu, S.; Zhao, G. et al. Precise targeting of POLR2A as a therapeutic strategy for human triple negative breast cancer. Nat. Nanotechnol. 2019, 14, 388–397.

[45]

Xu, J. S.; Liu, Y. H.; Liu, S.; Ou, W. Q.; White, A.; Stewart, S.; Tkaczuk, K. H. R.; Ellis, L. M.; Wan, J.; Lu, X. B. et al. Metformin bicarbonate-mediated efficient RNAi for precise targeting of TP53 deficiency in colon and rectal cancers. Nano Today 2022, 43, 101406.

[46]

Li, Z. H.; Wang, Z. Z.; Dinh, P. U. C.; Zhu, D. S.; Popowski, K. D.; Lutz, H.; Hu, S. Q.; Lewis, M. G.; Cook, A.; Andersen, H. et al. Cell-mimicking nanodecoys neutralize SARS-CoV-2 and mitigate lung injury in a non-human primate model of COVID-19. Nat. Nanotechnol. 2021, 16, 942–951.

[47]

M.; Li, H.; Shen, D. L.; Wang, Z. S.; Liu, H. F.; Zhu, D. S.; Wang, Z. Z.; Li, L. Y.; Popowski, K. D.; Ou, C. W. et al. Decoy exosomes offer protection against chemotherapy-induced toxicity. Adv. Sci. 2022, 9, 2203505.

[48]

Chen, X. R.; Zhu, L. Y.; Liu, J. Y.; Lu, Y.; Pan, L. L.; Xiao. J. J. Greasing wheels of cell-free therapies for cardiovascular diseases: Integrated devices of exosomes/exosome-like nanovectors with bioinspired materials. Extracell. Vesicle 2022, 1, 100010.

Nano Research
Pages 7248-7259
Cite this article:
Wang X, Hu S, Zhu D, et al. Comparison of extruded cell nanovesicles and exosomes in their molecular cargos and regenerative potentials. Nano Research, 2023, 16(5): 7248-7259. https://doi.org/10.1007/s12274-023-5374-3
Topics:

3436

Views

8

Crossref

7

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 02 August 2022
Revised: 30 November 2022
Accepted: 03 December 2022
Published: 28 February 2023
© Tsinghua University Press 2023
Return