AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Fabrication of N,S co-doped carbon immobilized high-density Co single atoms toward electro-oxidation of organic sulfides with water as feedstock

Pei Zhu1,§Wen-Xiong Shi1,§Ying Wang3Zhi-Ming Zhang1( )Lina Li2( )Changhua An1( )
Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, Tianjin University of Technology, Tianjin 300384, China
Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China

§ Pei Zhu and Wen-Xiong Shi contributed equally to this work.

Show Author Information

Graphical Abstract

High-density Co single atoms has been successfully immobilized on N,S co-doped carbon support, exhibiting an excellent electrocatalytic performance and the robust stability towards selective oxidation of organic sulfides in an acid electrolyte.

Abstract

Development of high-density single atoms site (SAs) electrocatalysts is highly desirable due to their extraordinary catalytic performance. However, their synthesis is still challenging and their anticorrosion capacities in electrolyte (particularly in acidic electrolyte) are unsatisfying. Herein, we have constructed N,S co-doped carbon to anchor ~ 10 wt.% Co SAs (Co-SAs/NSC) via a novel polymerization–sulfurization–pyrolysis strategy toward selective electro-oxidation of thioethers in acidic solution. The as-obtained Co SAs has a coordination geometry of Co-S2N4, exhibiting excellent electrocatalytic activity and robust stability. At a low potential of 1.40 V vs. reversible hydrogen electrode (RHE), the conversion rate of thioethers over Co-SAs/NSC reaches 99.7% with 100% selectivity and 100% Faraday efficiency (FE) for producing sulfoxide, which is higher than the commercial Pt electrode and the reported state-of-the-art catalysts. Theoretical calculations and experiments reveal that the Co-S2N4 structure endows the outstanding electro-oxidation activity of Co SAs through significantly promoting desorption of the products. This work presents a convenient strategy to build high-performance SAs catalysts for the resourceful use of sulfur-containing pollutants.

Electronic Supplementary Material

Download File(s)
12274_2022_5381_MOESM1_ESM.pdf (2.2 MB)

References

[1]

Hai, X.; Xi, S. B.; Mitchell, S.; Harrath, K.; Xu, H. M.; Akl, D. F.; Kong, D. B.; Li, J.; Li, Z. J.; Sun, T. et al. Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries. Nat. Nanotechnol. 2022, 17, 174–181.

[2]

Zhou, Y. Z.; Tao, X. F.; Chen, G. B.; Lu, R. H.; Wang, D.; Chen, M. X.; Jin, E. Q.; Yang, J.; Liang, H. W.; Zhao, Y. et al. Multilayer stabilization for fabricating high-loading single-atom catalysts. Nat. Commun. 2020, 11, 5892.

[3]

Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

[4]

Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

[5]

Zhang, J. W.; Zeng, G. M.; Chen, L. L.; Lai, W. C.; Yuan, Y. L.; Lu, Y. F.; Ma, C.; Zhang, W. H.; Huang, H. W. Tuning the reaction path of CO2 electroreduction reaction on indium single-atom catalyst: Insights into the active sites. Nano Res. 2022, 15, 4014–4022.

[6]

Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

[7]

Pan, Y.; Ma, X. L.; Wang, M. M.; Yang, X.; Liu, S. J.; Chen, H. C.; Zhuang, Z. W.; Zhang, Y. H.; Cheong, W. C.; Zhang, C. et al. Construction of N,P co-doped carbon frames anchored with Fe single atoms and Fe2P nanoparticles as a robust coupling catalyst for electrocatalytic oxygen reduction. Adv. Mater. 2022, 34, 2203621.

[8]

Li, Z. J.; Leng, L. P.; Lu, X. W.; Zhang, M. Y.; Xu, Q.; Horton, J. H.; Zhu. J. F. Single palladium atoms stabilized by β-FeOOH nanorod with superior performance for selective hydrogenation of cinnamaldehyde. Nano Res. 2022, 15, 3114–3121.

[9]

Ren, Y. J.; Tang, Y.; Zhang, L. L.; Liu, X. Y.; Li, L.; Miao, S.; Su, D. S.; Wang, A. Q.; Li, J.; Zhang, T. Unraveling the coordination structure–performance relationship in Pt1/Fe2O3 single-atom catalyst. Nat. Commun. 2019, 10, 4500.

[10]

Zhang, J.; Wu, X.; Cheong, W. C.; Chen, W. X.; Lin, R.; Li, J.; Zheng, L. R.; Yan, W. S.; Gu, L.; Chen, C. et al. Cation vacancy stabilization of single-atomic-site Pt1/Ni(OH)x catalyst for diboration of alkynes and alkenes. Nat. Commun. 2018, 9, 1002.

[11]

Reier, T.; Nong, H. N.; Teschner, D.; Schlögl, R.; Strasser, P. Electrocatalytic oxygen evolution reaction in acidic environments—Reaction mechanisms and catalysts. Adv. Energy Mater. 2017, 7, 1601275.

[12]

Xiang, K.; Wu, D.; Deng, X. H.; Li, M.; Chen, S. Y.; Hao, P. P.; Guo, X. F.; Luo, J. L.; Fu, X. Z. Boosting H2 generation coupled with selective oxidation of methanol into value-added chemical over cobalt hydroxide@hydroxysulfide nanosheets electrocatalysts. Adv. Funct. Mater. 2020, 30, 1909610.

[13]

Li, N. N.; Zhu, C.; Zhang, J. W.; Jing, H. Y.; Hu, J. W.; Hao, C.; Shi, Y. T. Single-atom-catalyst with abundant Co-S4 sites for use as a counter electrode in photovoltaics. Chem. Commun. 2021, 57, 5302–5305.

[14]

Cui, T. T.; Ma, L. N.; Wang, S. B.; Ye, C. L.; Liang, X.; Zhang, Z. D.; Meng, G.; Zheng, L. R.; Hu, H. S.; Zhang, J. W. et al. Atomically dispersed Pt-N3C1 sites enabling efficient and selective electrocatalytic C–C bond cleavage in lignin models under ambient conditions. J. Am. Chem. Soc. 2021, 143, 9429–9439.

[15]

Wang, T. H.; Tao, L.; Zhu, X. R.; Chen, C.; Chen, W.; Du, S. Q.; Zhou, Y. Y.; Zhou, B.; Wang, D. D.; Xie, C. et al. Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction. Nat. Catal. 2021, 5, 66–73.

[16]

Zhang, Y. Q.; Zhou, B.; Wei, Z. X.; Zhou, W.; Wang, D. D.; Tian, J.; Wang, T. H.; Zhao, S. L.; Liu, J. L.; Tao, L. et al. Coupling glucose-assisted Cu(I)/Cu(II) redox with electrochemical hydrogen production. Adv. Mater. 2021, 33, 2104791.

[17]

Yang, G. C.; Jiao, Y. Q.; Yan, H. J.; Xie, Y.; Tian, C. G.; Wu, A. P.; Wang, Y.; Fu, H. G. Unraveling the mechanism for paired electrocatalysis of organics with water as a feedstock. Nat. Commun. 2022, 13, 3125.

[18]

Zheng, J.; Chen, X. L.; Zhong, X.; Li, S. Q.; Liu, T. Z.; Zhuang, G. L.; Li, X. N.; Deng, S. W.; Mei, D. H.; Wang, J. G. Hierarchical porous NC@CuCo nitride nanosheet networks: Highly efficient bifunctional electrocatalyst for overall water splitting and selective electrooxidation of benzyl alcohol. Adv. Funct. Mater. 2017, 27, 1704169.

[19]

Zhu, P.; Shen, Y. L.; Dai, L. X.; Yu, Q. Y.; Zhang, Z. M.; An, C. H. Accelerating anode reaction with electro-oxidation of alcohols over Ru nanoparticles to reduce the potential for water splitting. ACS Appl. Mater. Interfaces 2022, 14, 1452–1459.

[20]

Laudadio, G.; Straathof, N. J. W.; Lanting, M. D.; Knoops, B.; Hessel, V.; Noël, T. An environmentally benign and selective electrochemical oxidation of sulfides and thiols in a continuous-flow microreactor. Green Chem. 2017, 19, 4061–4066.

[21]

Liu, S. W.; Chen, B. C.; Yang, Y.; Yang, Y. H.; Chen, Q. J.; Zeng, X. J.; Xu, B. Electrochemical oxidations of thioethers: Modulation of oxidation potential using a hydrogen bonding network. Electrochem. Commun. 2019, 109, 106583.

[22]

Han, S. Y.; Wang, C. H.; Shi, Y. M.; Liu, C. B.; Yu, Y. F.; Lu, S. Y.; Zhang, B. Membrane-free selective oxidation of thioethers with water over a nickel phosphide nanocube electrode. Cell Rep. Phys. Sci. 2021, 2, 100462.

[23]

Wang, X. Y.; Chen, L. J.; Chong, S. Y.; Little, M. A.; Wu, Y. Z.; Zhu, W. H.; Clowes, R.; Yan, Y.; Zwijnenburg, M. A.; Sprick, R. S. et al. Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nat. Chem. 2018, 10, 1180–1189.

[24]

Kaiser, D.; Klose, I.; Oost, R.; Neuhaus, J.; Maulide, N. Bond-forming and -breaking reactions at sulfur(IV): Sulfoxides, sulfonium salts, sulfur ylides, and sulfinate salts. Chem. Rev. 2019, 119, 8701–8780.

[25]

Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.; Payne, M. C. First principles methods using CASTEP. Z. Kristallogr.—Cryst. Mater. 2005, 220, 567–570.

[26]

Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864–B871.

[27]

Perdew, J. P.; Ruzsinszky, A.; Csonka, G. I.; Vydrov, O. A.; Scuseria, G. E.; Constantin, L. A.; Zhou, X. L.; Burke, K. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 2008, 100, 136406.

[28]

Head, J. D.; Zerner, M. C. A Broyden–Fletcher–Goldfarb–Shanno optimization procedure for molecular geometries. Chem. Phys. Lett. 1985, 122, 264–270.

[29]

Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895.

[30]

Liang, C.; Chen, Y.; Wu, M.; Wang, K.; Zhang, W. K.; Gan, Y. P.; Huang, H.; Chen, J.; Xia, Y.; Zhang, J. et al. Green synthesis of graphite from CO2 without graphitization process of amorphous carbon. Nat. Commun. 2021, 12, 119.

[31]

Boppella, R.; Austeria P, M.; Kim, Y.; Kim, E.; Song, I.; Eom, Y.; Kumar, D. P.; Balamurugan, M.; Sim, E.; Kim, D. H. et al. Pyrrolic N-stabilized monovalent Ni single-atom electrocatalyst for efficient CO2 reduction: Identifying the role of pyrrolic-N and synergistic electrocatalysis. Adv. Funct. Mater. 2022, 32, 2202351.

[32]

Shen, R. A.; Chen, W. X.; Peng, Q.; Lu, S. Q.; Zheng, L. R.; Cao, X.; Wang, Y.; Zhu, W.; Zhang, J. T.; Zhuang, Z. B. et al. High-concentration single atomic Pt sites on hollow CuSx for selective O2 reduction to H2O2 in acid solution. Chem 2019, 5, 2099–2110.

[33]

Min, Y.; Zhou, X.; Chen, J. J.; Chen, W. X.; Zhou, F. Y.; Wang, Z. Y.; Yang, J.; Xiong, C.; Wang, Y.; Li, F. T. et al. Integrating single-cobalt-site and electric field of boron nitride in dechlorination electrocatalysts by bioinspired design. Nat. Commun. 2021, 12, 303.

[34]

Li, J. C.; Meng, Y.; Zhang, L. L.; Li, G. Z.; Shi, Z. C.; Hou, P. X.; Liu, C.; Cheng, H. M.; Shao, M. H. Dual-phasic carbon with Co single atoms and nanoparticles as a bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. Adv. Funct. Mater. 2021, 31, 2103360.

[35]

Han, X. P.; Ling, X. F.; Wang, Y.; Ma, T. Y.; Zhong, C.; Hu, W. B.; Deng, Y. D. Generation of nanoparticle, atomic-cluster, and single-atom cobalt catalysts from zeolitic imidazole frameworks by spatial isolation and their use in zinc-air batteries. Angew. Chem., Int. Ed. 2019, 58, 5359–5364.

[36]

Yuan, S.; Pu, Z. H.; Zhou, H.; Yu, J.; Amiinu, I. S.; Zhu, J. W.; Liang, Q. R.; Yang, J. L.; He, D. P.; Hu, Z. Y. et al. A universal synthesis strategy for single atom dispersed cobalt/metal clusters heterostructure boosting hydrogen evolution catalysis at all pH values. Nano Energy 2019, 59, 472–480.

[37]

Li, N.; Song, X. Z.; Wang, L.; Geng, X. L.; Wang, H.; Tang, H. Y.; Bian, Z. Y. Single-atom cobalt catalysts for electrocatalytic hydrodechlorination and oxygen reduction reaction for the degradation of chlorinated organic compounds. ACS Appl. Mater. Interfaces 2020, 12, 24019–24029.

[38]

Li, Y. L.; Jia, B. M.; Fan, Y. Z.; Zhu, K. L.; Li, G. Q.; Su, C. Y. Bimetallic zeolitic imidazolite framework derived carbon nanotubes embedded with Co nanoparticles for efficient bifunctional oxygen electrocatalyst. Adv. Energy Mater. 2018, 8, 1702048.

[39]

Wang, Y.; Li, J. L.; Shi, W. X.; Zhang, Z. M.; Guo, S.; Si, R.; Liu, M.; Zhou, H. C.; Yao, S.; An, C. H. et al. Unveiling single atom nucleation for isolating ultrafine fcc Ru nanoclusters with outstanding dehydrogenation activity. Adv. Energy Mater. 2020, 10, 2002138.

[40]

Ilardi, E. A.; Vitaku, E.; Njardarson, J. T. Data-mining for sulfur and fluorine: An evaluation of pharmaceuticals to reveal opportunities for drug design and discovery. J. Med. Chem. 2014, 57, 2832–2842.

[41]

Wang, N. Z.; Saidhareddy, P.; Jiang, X. F. Construction of sulfur-containing moieties in the total synthesis of natural products. Nat. Prod. Rep. 2020, 37, 246–275.

[42]

Voiry, D.; Chhowalla, M.; Gogotsi, Y.; Kotov, N. A.; Li, Y.; Penner, R. M.; Schaak, R. E.; Weiss, P. S. Best practices for reporting electrocatalytic performance of nanomaterials. ACS Nano 2018, 12, 9635–9638.

Nano Research
Pages 6593-6600
Cite this article:
Zhu P, Shi W-X, Wang Y, et al. Fabrication of N,S co-doped carbon immobilized high-density Co single atoms toward electro-oxidation of organic sulfides with water as feedstock. Nano Research, 2023, 16(5): 6593-6600. https://doi.org/10.1007/s12274-023-5381-z
Topics:

5757

Views

3

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 19 September 2022
Revised: 29 November 2022
Accepted: 04 December 2022
Published: 08 February 2023
© Tsinghua University Press 2023
Return