AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Laser-induced Janus graphene/poly(p-phenylene benzobisoxazole) fabrics with intrinsic flame retardancy as flexible sensors and breathable electrodes for fire-fighting field

Yu Luo1,§Yaping Miao1,§Huimin Wang2Kai Dong3Lin Hou4Yanyan Xu4Weichun Chen1Yao Zhang1Yingying Zhang2Wei Fan1( )
School of Textile Science and Engineering, Key Laboratory of Functional Textile Material and Product of Ministry of Education, Xi’an Polytechnic University, Xi’an 710048, China
Department of Chemistry, Tsinghua University, Beijing 100084, China
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
Shaanxi Textile Research Institute Co., Ltd., Xi’an 710038, China

§ Yu Luo and Yaping Miao contributed equally to this work.

Show Author Information
An erratum to this article is available online at:

Graphical Abstract

We fabricated two kinds of Janus graphene/poly(p-phenylene benzobisoxazole) fabrics by laser direct writing approach and evaluated their performance as intelligent firefighting clothes and fire masks.

Abstract

Conventional firefighting clothing and fire masks can protect firemen’s safety to a certain extent, whereas cannot perceive environmental hazards and monitor their physical status in real time. Herein, we fabricated two kinds of Janus graphene/poly(p-phenylene benzobisoxazole) (PBO) fabrics by laser direct writing approach and evaluated their performance as intelligent firefighting clothes and fire masks. The results showed that the Janus graphene/PBO fabrics were virtually non-combustible and achieved the highest thermal protection time of 18.91 s ever reported in flame, which is due to the intrinsic flame-retardant nature of PBO fibers. The graphene/PBO woven fabrics-based sensor showed good repeatability and stability in human motion monitoring and NO2 gas detection. Furthermore, the piezoelectric fire mask was assembled with graphene/PBO nonwoven fabric as electrode layer and polyvinylidene fluoride (PVDF) electrostatic direct writing film as piezoelectric layer. The filtration efficiency of the fire mask reaches 95% for PM2.5 and 100% for PM3.0, indicating its effective filtration capability for smoke particles in fires. The respiratory resistance of the piezoelectric fire mask (46.8 Pa) was lower than that of commercial masks (49 Pa), showing that it has good wearing comfort. Besides, the piezoelectric fire mask can be sensitive to the speed and intensity of human breathing, which is essential for indirectly reflecting the health of the human body. Consequently, this work provides a facile approach to fabricate next-generation intrinsic flame-retardant smart textiles for smart firefighting.

Electronic Supplementary Material

Video
12274_2023_5382_MOESM2_ESM.mp4
12274_2023_5382_MOESM3_ESM.mp4
Download File(s)
12274_2023_5382_MOESM1_ESM.pdf (3.6 MB)

References

[1]

Fu, T.; Zhao, X.; Chen, L.; Wu, W. S.; Zhao, Q.; Wang, X. L.; Guo, D. M.; Wang, Y. Z. Bioinspired color changing molecular sensor toward early fire detection based on transformation of phthalonitrile to phthalocyanine. Adv. Funct. Mater. 2019, 29, 1806586.

[2]

Cascio, W. E. Wildland fire smoke and human health. Sci. Total Environ. 2018, 624, 586–595.

[3]

Barnard, J. E.; Scott, S.; Tennison, S.; Smith, M. W.; Burrows, A. D.; Perera, S.; Chew, Y. M. J. Low burden, adsorbent and heat absorbing structures for respiratory protection in building fires. Chem. Eng. J. 2021, 421, 127834.

[4]

Kahn, S. A.; Patel, J. H.; Lentz, C. W.; Bell, D. E. Firefighter burn injuries: Predictable patterns influenced by turnout gear. J. Burn Care Res. 2012, 33, 152–156.

[5]

Cheng, R. W.; Dong, K.; Liu, L. X.; Ning, C.; Chen, P. F.; Peng, X.; Liu, D.; Wang, Z. L. Flame-retardant textile-based triboelectric nanogenerators for fire protection applications. ACS Nano 2020, 14, 15853–15863.

[6]

Yin, F. F.; Guo, Y. J.; Li, H.; Yue, W. J.; Zhang, C. W.; Chen, D.; Geng, W.; Li, Y.; Gao, S.; Shen, G. Z. A waterproof and breathable cotton/rGO/CNT composite for constructing a layer-by-layer structured multifunctional flexible sensor. Nano Res. 2022, 15, 9341–9351.

[7]

Chen, W. C.; Fan, W.; Wang, Q.; Yu, X. C.; Luo, Y.; Wang, W. T.; Lei, R. X.; Li, Y. A nano-micro structure engendered abrasion resistant, superhydrophobic, wearable triboelectric yarn for self-powered sensing. Nano Energy 2022, 103, 107769.

[8]

Han, W. P.; Wu, Y. J.; Gong, H.; Liu, L. X.; Yan, J. X.; Li, M. F.; Long, Y. Z.; Shen, G. Z. Reliable sensors based on graphene textile with negative resistance variation in three dimensions. Nano Res. 2021, 14, 2810–2818.

[9]

Cheng, B. C.; Wu, P. Y. Scalable fabrication of Kevlar/Ti3C2Tx MXene intelligent wearable fabrics with multiple sensory capabilities. ACS Nano 2021, 15, 8676–8685.

[10]

He, H. L.; Liu, J. R.; Wang, Y. S.; Zhao, Y. H.; Qin, Y.; Zhu, Z. Y.; Yu, Z. C.; Wang, J. F. An ultralight self-powered fire alarm e-textile based on conductive aerogel fiber with repeatable temperature monitoring performance used in firefighting clothing. ACS Nano 2022, 16, 2953–2967.

[11]

Khan, F.; Wang, S. C.; Ma, Z. W.; Ahmed, A.; Song, P. A.; Xu, Z. G.; Liu, R. P.; Chi, H. J.; Gu, J. Y.; Tang, L. C. et al. A durable, flexible, large-area, flame-retardant, early fire warning sensor with built-in patterned electrodes. Small Methods 2021, 5, 2001040.

[12]

Wang, B. L.; Lai, X. J.; Li, H. Q.; Jiang, C. C.; Gao, J. F.; Zeng, X. R. Multifunctional MXene/chitosan-coated cotton fabric for intelligent fire protection. ACS Appl. Mater. Interfaces 2021, 13, 23020–23029.

[13]

Sun, P.; Cai, N. X.; Zhong, X. D.; Zhao, X. J.; Zhang, L.; Jiang, S. H. Facile monitoring for human motion on fireground by using MiEs-TENG sensor. Nano Energy 2021, 89, 106492.

[14]

Xia, S.; Wang, M.; Gao, G. H. Preparation and application of graphene-based wearable sensors. Nano Res. 2022, 15, 9850–9865.

[15]

Lin, J.; Peng, Z. W.; Liu, Y. Y.; Ruiz-Zepeda, F.; Ye, R. Q.; Samuel, E. L. G.; Yacaman, M. J.; Yakobson, B. I.; Tour, J. M. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 2014, 5, 5714.

[16]

Wang, Y.; Zhao, Y.; Li, X.; Jiang, L.; Qu, L. T. Laser-based growth and treatment of graphene for advanced photo- and electro-related device applications. Adv. Funct. Mater. 2022, 32, 2203164.

[17]

Peng, Y. Y.; Zhao, W. W.; Ni, F.; Yu, W. J.; Liu, X. Q. Forest-like laser-induced graphene film with ultrahigh solar energy utilization efficiency. ACS Nano 2021, 15, 19490–19502.

[18]

Lamberti, A.; Serrapede, M.; Ferraro, G.; Fontana, M.; Perrucci, F.; Bianco, S.; Chiolerio, A.; Bocchini, S. All-SPEEK flexible supercapacitor exploiting laser-induced graphenization. 2D Mater. 2017, 4, 035012.

[19]

Singh, S. P.; Li, Y. L.; Zhang, J. B.; Tour, J. M.; Arnusch, C. J. Sulfur-doped laser-induced porous graphene derived from polysulfone-class polymers and membranes. ACS Nano 2018, 12, 289–297.

[20]

Ye, R. Q.; Han, X.; Kosynkin, D. V.; Li, Y. L.; Zhang, C. H.; Jiang, B.; Marti, A. A.; Tour, J. M. Laser-induced conversion of teflon into fluorinated nanodiamonds or fluorinated graphene. ACS Nano 2018, 12, 1083–1088.

[21]

Wang, H. M.; Wang, H. M.; Wang, Y. L.; Su, X. Y.; Wang, C. Y.; Zhang, M. C.; Jian, M. Q.; Xia, K. L.; Liang, X. P.; Lu, H. J. et al. Laser writing of janus graphene/Kevlar textile for intelligent protective clothing. ACS Nano 2020, 14, 3219–3226.

[22]

Hu, X. D.; Jenkins, S. E.; Min, B. G.; Polk, M. B.; Kumar, S. Rigid-rod polymers: Synthesis, processing, simulation, structure, and properties. Macromol. Mater. Eng. 2003, 288, 823–843.

[23]

Liu, Z.; Fan, X. L.; Cheng, L.; Zhang, J. L.; Tang, L.; Tang, Y. S.; Kong, J.; Gu, J. W. Hybrid polymer membrane functionalized PBO fibers/cyanate esters wave-transparent laminated composites. Adv. Fiber Mater. 2022, 4, 520–531.

[24]

Chae, H. G.; Kumar, S. Rigid-rod polymeric fibers. J. Appl. Polym. Sci. 2006, 100, 791–802.

[25]

Qian, Z. C.; Li, R.; Guo, J.; Wang, Z.; Li, X. F.; Li, C. C.; Zhao, N.; Xu, J. Triboelectric nanogenerators made of polybenzazole aerogels as fire-resistant negative tribo-materials. Nano Energy 2019, 64, 103900.

[26]

Bourbigot, S.; Flambard, X. Heat resistance and flammability of high performance fibres: A review. Fire Mater. 2002, 26, 155–168.

[27]

Vivaldi, F. M.; Dallinger, A.; Bonini, A.; Poma, N.; Sembranti, L.; Biagini, D.; Salvo, P.; Greco, F.; Di Francesco, F. Three-dimensional (3D) laser-induced graphene: Structure, properties, and application to chemical sensing. ACS Appl. Mater. Interfaces 2021, 13, 30245–30260.

[28]

Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

[29]

Cao, L. J.; Zhu, S. R.; Pan, B. H.; Dai, X. Y.; Zhao, W. W.; Liu, Y.; Xie, W. P.; Kuang, Y. B.; Liu, X. Q. Stable and durable laser-induced graphene patterns embedded in polymer substrates. Carbon 2020, 163, 85–94.

[30]

Meng, X.; Fan, W.; Mahari, W. A. W.; Ge, S. B.; Xia, C. L.; Wu, F.; Han, L.; Wang, S. J.; Zhang, M. L.; Hu, Z. et al. Production of three-dimensional fiber needle-punching composites from denim waste for utilization as furniture materials. J. Cleaner Prod. 2021, 281, 125321.

[31]

Debnath, S.; Chauhan, V. K.; Singh, J. P. Air permeability of needle-punched filter media-virgin and recycled polyester. J. Text. Inst. 2020, 111, 1159–1165.

[32]

Das, A.; Alagirusamy, R.; Nagendra, K. R. Filtration characteristics of spun-laid nonwoven fabrics. Indian J. Fibre Text. Res. 2009, 34, 253–257.

[33]

Maurya, S. K.; Somkuwar, V. U.; Garg, H.; Das, A.; Kumar, B. Thermal protective performance of single-layer rib-knitted structure and its derivatives under radiant heat flux. J. Ind. Text. 2022, 51, 8865S–8883S.

[34]

Kothari, V. K.; Chakraborty, S. Thermal protective performance of clothing exposed to radiant heat. J. Text. Inst. 2015, 106, 1388–1393.

[35]

Sun, G.; Yoo, H. S.; Zhang, X. S.; Pan, N. Radiant protective and transport properties of fabrics used by wildland firefighters. Text. Res. J. 2000, 70, 567–573.

[36]

Kothari, V. K.; Chakraborty, S. Protective performance of thermal protective clothing assemblies exposed to different radiant heat fluxes. Fibers Polym. 2016, 17, 809–814.

[37]

Ahmed, A.; El-Kady, M. F.; Hassan, I.; Negm, A.; Pourrahimi, A. M.; Muni, M.; Selvaganapathy, P. R.; Kaner, R. B. Fire-retardant, self-extinguishing triboelectric nanogenerators. Nano Energy 2019, 59, 336–345.

[38]

Guan, Q. B.; Lu, X.; Chen, Y. Y.; Zhang, H. Y.; Zheng, Y. X.; Neisiany, R. E.; You, Z. W. High-performance liquid crystalline polymer for intrinsic fire-resistant and flexible triboelectric nanogenerators. Adv. Mater. 2022, 34, 2204543.

[39]

Yang, S. T.; Li, C. W.; Chen, X. Y.; Zhao, Y. P.; Zhang, H.; Wen, N. X.; Fan, Z.; Pan, L. J. Facile fabrication of high-performance pen ink-decorated textile strain sensors for human motion detection. ACS Appl. Mater. Interfaces 2020, 12, 19874–19881.

[40]

Chen, Z.; Wang, J. R.; Pan, D. X.; Wang, Y.; Noetzel, R.; Li, H.; Xie, P.; Pei, W. L.; Umar, A.; Jiang, L. et al. Mimicking a dog’s nose: Scrolling graphene nanosheets. ACS Nano 2018, 12, 2521–2530.

[41]

Alves, C. A.; Gonçalves, C.; Pio, C. A.; Mirante, F.; Caseiro, A.; Tarelho, L.; Freitas, M. C.; Viegas, D. X. Smoke emissions from biomass burning in a mediterranean shrubland. Atmos. Environ. 2010, 44, 3024–3033.

[42]

Costa, M. A. M.; Carvalho, J. A. Jr.; Neto, T. G. S.; Anselmo, E.; Lima, B. A.; Kura, L. T. U.; Santos, J. C. Real-time sampling of particulate matter smaller than 2.5 μm from Amazon forest biomass combustion. Atmos. Environ. 2012, 54, 480–489.

[43]

Ye, X. R.; Shi, B. H.; Li, M.; Fan, Q.; Qi, X. J.; Liu, X. H.; Zhao, S. K.; Jiang, L.; Zhang, X. J.; Fu, K. et al. All-textile sensors for boxing punch force and velocity detection. Nano Energy 2022, 97, 107114.

[44]

Fan, W.; Zhang, G.; Zhang, X. L.; Dong, K.; Liang, X. P.; Chen, W. C.; Yu, L. J.; Zhang, Y. Y. Superior unidirectional water transport and mechanically stable 3D orthogonal woven fabric for human body moisture and thermal management. Small 2022, 18, 2107150.

[45]

Xue, L. L.; Fan, W.; Yu, Y.; Dong, K.; Liu, C. K.; Sun, Y. L.; Zhang, C.; Chen, W. C.; Lei, R. X.; Rong, K. et al. A novel strategy to fabricate core–sheath structure piezoelectric yarns for wearable energy harvesters. Adv. Fiber Mater. 2021, 3, 239–250.

[46]

Kang, J. Y.; Liu, T.; Lu, Y.; Lu, L. L.; Dong, K.; Wang, S. J.; Li, B.; Yao, Y.; Bai, Y.; Fan, W. Polyvinylidene fluoride piezoelectric yarn for real-time damage monitoring of advanced 3D textile composites. Compos. Part B: Eng. 2022, 245, 110229.

Nano Research
Pages 7600-7608
Cite this article:
Luo Y, Miao Y, Wang H, et al. Laser-induced Janus graphene/poly(p-phenylene benzobisoxazole) fabrics with intrinsic flame retardancy as flexible sensors and breathable electrodes for fire-fighting field. Nano Research, 2023, 16(5): 7600-7608. https://doi.org/10.1007/s12274-023-5382-y
Topics:

8602

Views

32

Crossref

43

Web of Science

45

Scopus

1

CSCD

Altmetrics

Received: 22 September 2022
Revised: 21 November 2022
Accepted: 05 December 2022
Published: 12 January 2023
© Tsinghua University Press, corrected publication 2023
Return