Graphical Abstract

Fibrous nanofluidic materials are ideal building blocks for implantable electrode, biomimetic actuator, and wearable electronics due to their favorable features of intrinsic flexibility and unidirectional ion transport. However, the large-scale preparation of fibrous nanofluidic materials with desirable mechanical strength and good environment adaptability for practical use remains challenging. Herein, by fully taking advantage of the attractive mechanical, structural, and chemical features of boron nitride (BN) nanosheet and nanofibrillated cellulose (NFC), a scalable and cost-effective three-dimensional (3D) printed macrofiber featuring abundant vertically aligned nanofluidic channels is demonstrated to exhibit a good combination of high tensile strength of 100 MPa, thermal stability of up to 230 °C, and ionic conductivity of 1.8 × 10−4 S/cm at low salt concentrations (< 10−3 M). In addition, the versatile surface chemistry of cellulose allows us to stabilize the macrofiber at the molecular level via a facile post-cross-linking method, which eventually enables the stable operation of the modified macrofiber in various extreme environments such as strong acidic, strong alkaline, and high temperature. We believe this work implies a promising guideline for designing and manufacturing fibrous nanodevices towards extreme environment operations.
Schoch, R. B.; Han, J.; Renaud, P. Transport phenomena in nanofluidics. Rev. Mod. Phys. 2008, 80, 839–883.
Koltonow, A. R.; Huang, J. X. Two-dimensional nanofluidics. Science 2016, 351, 1395–1396.
Hou, Y. Q.; Hou, X. Bioinspired nanofluidic iontronics. Science 2021, 373, 628–629.
Chen, C. J.; Hu, L. B. Nanoscale ion regulation in wood-based structures and their device applications. Adv. Mater. 2021, 33, 2002890.
Sparreboom, W.; van den Berg, A.; Eijkel, J. C. T. Principles and applications of nanofluidic transport. Nat. Nanotechnol. 2009, 4, 713–720.
Xie, Q.; Alibakhshi, M. A.; Jiao, S. P.; Xu, Z. P.; Hempel, M.; Kong, J.; Park, H. G.; Duan, C. H. Fast water transport in graphene nanofluidic channels. Nat. Nanotechnol. 2018, 13, 238–245.
Raidongia, K.; Huang, J. X. Nanofluidic ion transport through reconstructed layered materials. J. Am. Chem. Soc. 2012, 134, 16528–16531.
Xiao, K.; Jiang, L.; Antonietti, M. Ion transport in nanofluidic devices for energy harvesting. Joule 2019, 3, 2364–2380.
Li, S.; Li, Y. G.; Shao, Y. L.; Wang, H. Z. Emerging two-dimensional materials constructed nanofluidic fiber: Properties, preparation and applications. Adv. Fiber Mater. 2022, 4, 129–144.
Li, S.; Fan, Z. D.; Wu, G. Q.; Shao, Y. Y.; Xia, Z.; Wei, C. H.; Shen, F.; Tong, X. L.; Yu, J. C.; Chen, K. et al. Assembly of nanofluidic MXene fibers with enhanced ionic transport and capacitive charge storage by flake orientation. ACS Nano 2021, 15, 7821–7832.
Zhou, Y. B.; Chen, C. J.; Zhang, X.; Liu, D. P.; Xu, L. S.; Dai, J. Q.; Liou, S. C.; Wang, Y. L.; Li, C.; Xie, H. et al. Decoupling ionic and electronic pathways in low-dimensional hybrid conductors. J. Am. Chem. Soc. 2019, 141, 17830–17837.
Lao, J. C.; Lv, R. J.; Gao, J.; Wang, A. X.; Wu, J. S.; Luo, J. Y. Aqueous stable Ti3C2 MXene membrane with fast and photoswitchable nanofluidic transport. ACS Nano 2018, 12, 12464–12471.
Ding, L.; Xiao, D.; Lu, Z.; Deng, J. J.; Wei, Y. Y.; Caro, J.; Wang, H. H. Oppositely charged Ti3C2Tx MXene membranes with 2D nanofluidic channels for osmotic energy harvesting. Angew. Chem., Int. Ed. 2020, 59, 8720–8726.
Xin, G. Q.; Zhu, W. G.; Deng, Y. X.; Cheng, J.; Zhang, L. T.; Chung, A. J.; De, S.; Lian, J. Microfluidics-enabled orientation and microstructure control of macroscopic graphene fibres. Nat. Nanotechnol. 2019, 14, 168–175.
Yeh, C. N.; Raidongia, K.; Shao, J. J.; Yang, Q. H.; Huang, J. X. On the origin of the stability of graphene oxide membranes in water. Nat. Chem. 2015, 7, 166–170.
Fan, X. B.; Peng, W. C.; Li, Y.; Li, X. Y.; Wang, S. L.; Zhang, G. L.; Zhang, F. B. Deoxygenation of exfoliated graphite oxide under alkaline conditions: A green route to graphene preparation. Adv. Mater. 2008, 20, 4490–4493.
Qin, S.; Liu, D.; Wang, G.; Portehault, D.; Garvey, C. J.; Gogotsi, Y.; Lei, W. W.; Chen, Y. High and stable ionic conductivity in 2D nanofluidic ion channels between boron nitride layers. J. Am. Chem. Soc. 2017, 139, 6314–6320.
Yang, L. S.; Wang, D. S.; Liu, M. S.; Liu, H. M.; Tan, J. Y.; Wang, Z. Y.; Zhou, H. Y.; Yu, Q. M.; Wang, J. Y.; Lin, J. H. et al. Glue-assisted grinding exfoliation of large-size 2D materials for insulating thermal conduction and large-current-density hydrogen evolution. Mater. Today 2021, 51, 145–154.
Paton, K. R.; Varrla, E.; Backes, C.; Smith, R. J.; Khan, U.; O’Neill, A.; Boland, C.; Lotya, M.; Istrate, O. M.; King, P. et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 2014, 13, 624–630.
Zhang, C.; Tan, J. Y.; Pan, Y. K.; Cai, X. K.; Zou, X. L.; Cheng, H. M.; Liu, B. L. Mass production of 2D materials by intermediate-assisted grinding exfoliation. Natl. Sci. Rev. 2020, 7, 324–332.
Zhu, H. L.; Li, Y. Y.; Fang, Z. Q.; Xu, J. J.; Cao, F. Y.; Wan, J. Y.; Preston, C.; Yang, B.; Hu, L. B. Highly thermally conductive papers with percolative layered boron nitride nanosheets. ACS Nano 2014, 8, 3606–3613.
Olivier, C.; Moreau, C.; Bertoncini, P.; Bizot, H.; Chauvet, O.; Cathala, B. Cellulose nanocrystal-assisted dispersion of luminescent single-walled carbon nanotubes for layer-by-layer assembled hybrid thin films. Langmuir 2012, 28, 12463–12471.
Zeng, X. L.; Sun, J. J.; Yao, Y. M.; Sun, R.; Xu, J. B.; Wong, C. P. A combination of boron nitride nanotubes and cellulose nanofibers for the preparation of a nanocomposite with high thermal conductivity. ACS Nano 2017, 11, 5167–5178.
Zhi, C. Y.; Bando, Y.; Tang, C. C.; Kuwahara, H.; Golberg, D. Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv. Mater. 2009, 21, 2889–2893.
Zhou, G. Q.; Li, M. C.; Liu, C. Z.; Wu, Q. L.; Mei, C. T. 3D printed Ti3C2Tx MXene/cellulose nanofiber architectures for solid-state supercapacitors: Ink rheology, 3D printability, and electrochemical performance. Adv. Funct. Mater. 2022, 32, 2109593.
Hyun, W. J.; Thomas, C. M.; Chaney, L. E.; Mazarin de Moraes, A. C.; Hersam, M. C. Screen-printable hexagonal boron nitride ionogel electrolytes for mechanically deformable solid-state lithium-ion batteries. Nano Lett. 2022, 22, 5372–5378.
Evans, D. A.; McGlynn, A. G.; Towlson, B. M.; Gunn, M.; Jones, D.; Jenkins, T. E.; Winter, R.; Poolton, N. R. J. Determination of the optical band-gap energy of cubic and hexagonal boron nitride using luminescence excitation spectroscopy. J. Phys. Condens. Matter 2008, 20, 075233.
Paajanen, A.; Ceccherini, S.; Maloney, T.; Ketoja, J. A. Chirality and bound water in the hierarchical cellulose structure. Cellulose 2019, 26, 5877–5892.
Ling, S. J.; Chen, W. S.; Fan, Y. M.; Zheng, K.; Jin, K.; Yu, H. P.; Buehler, M. J.; Kaplan, D. L. Biopolymer nanofibrils: Structure, modeling, preparation, and applications. Prog. Polym. Sci. 2018, 85, 1–56.
Pakdel, A.; Bando, Y.; Golberg, D. Nano boron nitride flatland. Chem. Soc. Rev. 2014, 43, 934–959.
Wang, D. C.; Yu, H. Y.; Qi, D. M.; Wu, Y. H.; Chen, L. M.; Li, Z. H. Confined chemical transitions for direct extraction of conductive cellulose nanofibers with graphitized carbon shell at low temperature and pressure. J. Am. Chem. Soc. 2021, 143, 11620–11630.
Shen, D. K.; Gu, S. The mechanism for thermal decomposition of cellulose and its main products. Bioresour. Technol. 2009, 100, 6496–6504.
Chen, J. J.; Xin, W. W.; Chen, W. P.; Zhao, X. L.; Qian, Y. C.; Kong, X. Y.; Jiang, L.; Wen, L. P. Biomimetic nanocomposite membranes with ultrahigh ion selectivity for osmotic power conversion. ACS Cent. Sci. 2021, 7, 1486–1492.
Liu, P.; Zhou, T.; Yang, L. S.; Zhu, C. C.; Teng, Y. F.; Kong, X. Y.; Wen, L. P. Synergy of light and acid-base reaction in energy conversion based on cellulose nanofiber intercalated titanium carbide composite nanofluidics. Energy Environ. Sci. 2021, 14, 4400–4409.
Li, T.; Li, S. X.; Kong, W. Q.; Chen, C. J.; Hitz, E.; Jia, C.; Dai, J. Q.; Zhang, X.; Briber, R.; Siwy, Z. et al. A nanofluidic ion regulation membrane with aligned cellulose nanofibers. Sci. Adv. 2019, 5, eaau4238.
Chen, G. G.; Li, T.; Chen, C. J.; Kong, W. Q.; Jiao, M. L.; Jiang, B.; Xia, Q. Q.; Liang, Z. Q.; Liu, Y.; He, S. M. et al. Scalable wood hydrogel membrane with nanoscale channels. ACS Nano 2021, 15, 11244–11252.
Wang, C. W.; Wang, S.; Chen, G.; Kong, W. Q.; Ping, W. W.; Dai, J. Q.; Pastel, G.; Xie, H.; He, S. M.; Das, S. et al. Flexible, bio-compatible nanofluidic ion conductor. Chem. Mater. 2018, 30, 7707–7713.
Hanif, Z.; Choi, D.; Tariq, M. Z.; La, M.; Park, S. J. Water-stable flexible nanocellulose chiral nematic films through acid vapor cross-linked glutaraldehyde for chiral nematic templating. ACS Macro Lett. 2020, 9, 146–151.
Tang, A. M.; Yan, C. Y.; Chen, S. Y.; Li, D. G. Acid-catalyzed crosslinking of cellulose nanofibers with glutaraldehyde to improve the water resistance of nanopaper. J. Bioresour. Bioprod. 2018, 3, 59–64.
Jeon, J. G.; Kim, H. C.; Palem, R. R.; Kim, J.; Kang, T. J. Cross-linking of cellulose nanofiber films with glutaraldehyde for improved mechanical properties. Mater. Lett. 2019, 250, 99–102.
Hou, Y. Z.; Guan, Q. F.; Xia, J.; Ling, Z. C.; He, Z. Z.; Han, Z. M.; Yang, H. B.; Gu, P.; Zhu, Y. B.; Yu, S. H. et al. Strengthening and toughening hierarchical nanocellulose via humidity-mediated interface. ACS Nano 2021, 15, 1310–1320.
Gao, M. H.; Xie, X.; Huang, T.; Zhang, N.; Wang, Y. Glutaraldehyde-assisted crosslinking in regenerated cellulose films toward high dielectric and mechanical properties. Cellulose 2022, 29, 8177–8194.
Hong, S.; Ming, F. W.; Shi, Y.; Li, R. Y.; Kim, I. S.; Tang, C. Y.; Alshareef, H. N.; Wang, P. Two-dimensional Ti3C2Tx MXene membranes as nanofluidic osmotic power generators. ACS Nano 2019, 13, 8917–8925.
Abraham, J.; Vasu, K. S.; Williams, C. D.; Gopinadhan, K.; Su, Y.; Cherian, C. T.; Dix, J.; Prestat, E.; Haigh, S. J.; Grigorieva, I. V. et al. Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 2017, 12, 546–550.