AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

An ultra-sensitive metasurface biosensor for instant cancer detection based on terahertz spectra

Peiliang Wang1,2,3,4Jing Lou2,5Yun Yu2,8Lang Sun2Lan Sun6,7( )Guangyou Fang1,3,4( )Chao Chang2( )
Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
The Key Laboratory of Electromagnetic Radiation and Sensing Technology, Chinese Academy of Sciences, Beijing 100190, China
School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Air and Missile Defense College, Air Force Engineering University, Xi’an 710051, China
Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100007, China
School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
Show Author Information

Graphical Abstract

Differences in spectra caused by thousands of cells are easily captured and displayed, while more than 30-fold the number of cells (> 100,000) are required for the current clinical detection technology. The proposed biosensor has achieved the characterization of cells in normal and cancerous states. Compared with the hematoxylin and eosin (HE) staining (more than 100 min), this novel strategy takes at most 5 min to complete the detection of cells, and time consumption is reduced at least 20-fold. Due to the great polarization-insensitivity of the proposed biosensor, it is flexible to set samples and easy to realize automatic operation, which can further reduce labor costs in the future. Furthermore, the results were consistent with pathological results (the gold standard in clinic) by Gaussian curve fitting, which is also more reliable than conventional studies that proved by single physical system.

Abstract

Metasurface biosensors have become the core label-free and rapid-detection technology in bioanalysis. Lung cancer and brain cancer are the first leading causes of cancer death among adults and adolescents, respectively, where poor early diagnosis results from expensive detection costs and time consumption. To tackle the above problems, here, we introduce a terahertz-domain metasurface biosensor for cancer diagnosis, relying on a perfectly symmetrical periodic surface structure, which significantly exhibits polarization-insensitivity at 2.05 THz and the high-sensitivity of 504 GHz/RIU (RIU = refractive index unit). According to the frequency shifts and transmittance variations, four cell types are successfully distinguished from each other. The minimum number of cells is required for thousands of cells to display the differences of spectra, which is 1/30 of clinical methods. Furthermore, the results were consistent with pathological results (the gold standard in clinic) by Gaussian curve fitting. The proposed biosensor has really achieved the characterization of cells in normal and cancerous state. This detection strategy dramatically reduced the cost of detection by reuse and time consumption was reduced to 1/20 of the pathology testing. In addition, it is flexible to set samples and easy to realize automatic operation due to the great polarization-insensitivity of the proposed biosensor, which can further reduce labor costs in the future. It is envisioned that the proposed biosensor will present immense potential in the fields of cancer detection, distinguishing different cancers, and identifying primary lesion cancer or metastatic cancer.

References

[1]

Siegel, R. L.; Miller, K. D.; Fuchs, H. E.; Jemal, A. Cancer statistics, 2021. CA A Cancer J. Clin. 2021, 71, 7–33.

[2]

Miller, K. D.; Ostrom, Q. T.; Kruchko, C.; Patil, N.; Tihan, T.; Cioffi, G.; Fuchs, H. E.; Waite, K. A.; Jemal, A.; Siegel, R. L. et al. Brain and other central nervous system tumor statistics, 2021. CA A Cancer J Clin. 2021, 71, 381–406.

[3]

Herbst, R. S.; Morgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature 2018, 553, 446–454.

[4]

Carter, B.; Zhao, K. J. The epigenetic basis of cellular heterogeneity. Nat. Rev. Genet. 2021, 22, 235–250.

[5]

He, Z. Y.; Chen, Z.; Tan, M. D.; Elingarami, S.; Liu, Y.; Li, T. T.; Deng, Y.; He, N. Y.; Li, S.; Fu, J. et al. A review on methods for diagnosis of breast cancer cells and tissues. Cell Proliferat. 2020, 53, e12822.

[6]

Min, L.; Wang, B. S.; Bao, H. R.; Li, X. R.; Zhao, L. B.; Meng, J. X.; Wang, S. T. Advanced nanotechnologies for extracellular vesicle-based liquid biopsy. Adv. Sci. (Weinh.) 2021, 8, 2102789.

[7]

Kang, K.; Park, J.; Kim, K.; Yu, K. J. Recent developments of emerging inorganic, metal and carbon-based nanomaterials for pressure sensors and their healthcare monitoring applications. Nano Res. 2021, 14, 3096–3111.

[8]
Zhang, D. Z.; Wang, M. Y.; Tang, M. C.; Song, X. S.; Zhang, X. X.; Kang, Z. J.; Liu, X. H.; Zhang, J. H.; Xue, Q. Z. Recent progress of diversiform humidity sensors based on versatile nanomaterials and their prospective applications. Nano Res., in press, https://doi.org/10.1007/s12274-022-4917-y.
[9]

Ahmed, M. U.; Saaem, I.; Wu, P. C.; Brown, A. S. Personalized diagnostics and biosensors: A review of the biology and technology needed for personalized medicine. Crit. Rev. Biotechnol. 2014, 34, 180–196.

[10]

Beruete, M.; Jáuregui-López, I. Terahertz sensing based on metasurfaces. Adv. Opt. Mater. 2020, 8, 1900721.

[11]

Hillenbrand, R.; Taubner, T.; Keilmann, F. Phonon-enhanced light–matter interaction at the nanometre scale. Nature 2002, 418, 159–162.

[12]

Qin, W.; Miranowicz, A.; Li, P. B.; Lü, X. Y.; You, J. Q.; Nori, F. Exponentially enhanced light–matter interaction, cooperativities, and steady-state entanglement using parametric amplification. Phys. Rev. Lett. 2018, 120, 093601.

[13]

Smith, D. R.; Pendry, J. B.; Wiltshire, M. C. K. Metamaterials and negative refractive index. Science 2004, 305, 788–792.

[14]
Zhao, Y. N.; Huang, J.; Huang, Q.; Tao, Y. B.; Gu, R. Q.; Li, H. Y.; Liu, H. Electrochemical biosensor employing PbS colloidal quantum dots/Au nanospheres-modified electrode for ultrasensitive glucose detection. Nano Res., in press, https://doi.org/10.1007/s12274-022-5138-0.
[15]
Lei, X. L.; Xu, X. X.; Liu, L. Q.; Xu, L. G.; Wang, L.; Kuang, H.; Xu, C. L. Gold-nanoparticle-based multiplex immuno-strip biosensor for simultaneous determination of 83 antibiotics. Nano Res., in press, https://doi.org/10.1007/s12274-022-4762-z.
[16]

Papasimakis, N.; Fedotov, V. A.; Savinov, V.; Raybould, T. A.; Zheludev, N. I. Electromagnetic toroidal excitations in matter and free space. Nat. Mater. 2016, 15, 263–271.

[17]

Kaelberer, T.; Fedotov, V. A.; Papasimakis, N.; Tsai, D. P.; Zheludev, N. I. Toroidal dipolar response in a metamaterial. Science 2010, 330, 1510–1512.

[18]

Gupta, M.; Singh, R. Toroidal metasurfaces in a 2D flatland. Rev. Phys. 2020, 5, 100040.

[19]

Ahmadivand, A.; Gerislioglu, B.; Ahuja, R.; Mishra, Y. K. Terahertz plasmonics: The rise of toroidal metadevices towards immunobiosensings. Mater. Today 2020, 32, 108–130.

[20]

Rodrigo, D.; Tittl, A.; Ait-Bouziad, N.; John-Herpin, A.; Limaj, O.; Kelly, C.; Yoo, D.; Wittenberg, N. J.; Oh, S. H.; Lashuel, H. A. et al. Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces. Nat. Commun. 2018, 9, 2160.

[21]

Lawrence, M.; Barton, D. R.; Dixon, J.; Song, J. H.; Van De Groep, J.; Brongersma, M. L.; Dionne, J. A. High quality factor phase gradient metasurfaces. Nat. Nanotechnol. 2020, 15, 956–961.

[22]

Wu, D.; Liu, Y. M.; Yu, L.; Yu, Z. Y.; Chen, L.; Li, R. F.; Ma, R.; Liu, C.; Zhang, J. Q. N.; Ye, H. Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor. Sci. Rep. 2017, 7, 45210.

[23]

Meng, F. Y.; Wu, Q.; Erni, D.; Wu, K.; Lee, J. C. Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor. IEEE Trans. Microwave Theory Techn. 2012, 60, 3013–3022.

[24]

Wang, C. Q.; Jiang, X. F.; Zhao, G. M.; Zhang, M. Z.; Hsu, C. W.; Peng, B.; Stone, A. D.; Jiang, L.; Yang, L. Electromagnetically induced transparency at a chiral exceptional point. Nat. Phys. 2020, 16, 334–340.

[25]

Marangos, J. P. Electromagnetically induced transparency. J. Mod. Opt. 1998, 45, 471–503.

[26]

Xiang, Z. X.; Tang, C. X.; Chang, C.; Liu, G. Z. A new viewpoint and model of neural signal generation and transmission: Signal transmission on unmyelinated neurons. Nano Res. 2021, 14, 590–600.

[27]

Tan, X. X.; Wu, K. J.; Liu, S.; Yuan, Y. F.; Chang, C.; Xiong, W. Minimal-invasive enhancement of auditory perception by terahertz wave modulation. Nano Res. 2022, 15, 5235–5244.

[28]

Wang, K. C.; Wang, S. M.; Yang, L. X.; Wu, Z.; Zeng, B. Q.; Gong, Y. B. THz trapped ion model and THz spectroscopy detection of potassium channels. Nano Res. 2022, 15, 3825–3833.

[29]

Lou, J.; Xu, X.; Huang, Y. D.; Yu, Y.; Wang, J.; Fang, G. Y.; Liang, J. G.; Fan, C. H.; Chang, C. Optically controlled ultrafast terahertz metadevices with ultralow pump threshold. Small 2021, 17, 2104275.

[30]

Wang, P. L.; Lou, J.; Fang, G. Y.; Chang, C. Progress on cutting-edge infrared-terahertz biophysics. IEEE Trans. Microwave Theory Techn. 2022, 70, 5117–5140.

[31]

Ferguson, B.; Zhang, X. C. Materials for terahertz science and technology. Nat. Mater. 2002, 1, 26–33.

[32]

Zhang, X. C.; Shkurinov, A.; Zhang, Y. Extreme terahertz science. Nat. Photon. 2017, 11, 16–18.

[33]

Sengupta, K.; Nagatsuma, T.; Mittleman, D. M. Terahertz integrated electronic and hybrid electronic–photonic systems. Nat. Electron. 2018, 1, 622–635.

[34]

Song, B.; Shu, Y. S. Cell vibron polariton resonantly self-confined in the myelin sheath of nerve. Nano Res. 2020, 13, 38–44.

[35]

Siegel, P. H. Terahertz technology in biology and medicine. IEEE Trans. Microwave Theory Techn. 2004, 52, 2438–2447.

[36]

Dhillon, S. S.; Vitiello, M. S.; Linfield, E. H.; Davies, A. G.; Hoffmann, M. C.; Booske, J.; Paoloni, C.; Gensch, M.; Weightman, P.; Williams, G. P. et al. The 2017 terahertz science and technology roadmap. J. Phys. D Appl. Phys. 2017, 50, 043001.

[37]

Li, N.; Peng, D. L.; Zhang, X. J.; Shu, Y. S.; Zhang, F.; Jiang, L.; Song, B. Demonstration of biophoton-driven DNA replication via gold nanoparticle-distance modulated yield oscillation. Nano Res. 2021, 14, 40–45.

[38]

Lou, J.; Jiao, Y. N.; Yang, R. S.; Huang, Y. D.; Xu, X.; Zhang, L.; Ma, Z. F.; Yu, Y.; Peng, W. Y.; Yuan, Y. F. et al. Calibration-free, high-precision, and robust terahertz ultrafast metasurfaces for monitoring gastric cancers. Proc. Nat. l Acad. Sci. USA 2022, 119, e2209218119.

[39]

Yan, X.; Yang, M. S.; Zhang, Z.; Liang, L. J.; Wei, D. Q.; Wang, M.; Zhang, M.; Wang, T.; Liu, L. H.; Xie, J. H. et al. The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells. Biosen. Bioelectron. 2019, 126, 485–492.

[40]

Keshavarz, A.; Vafapour, Z. Water-based terahertz metamaterial for skin cancer detection application. IEEE Sensors J. 2019, 19, 1519–1524.

[41]

Vafapour, Z.; Troy, W.; Rashidi, A. Colon cancer detection by designing and analytical evaluation of a water-based THz metamaterial perfect absorber. IEEE Sensors J. 2021, 21, 19307–19313.

[42]

Zhang, C. B.; Xue, T. J.; Zhang, J.; Liu, L. H.; Xie, J. H.; Wang, G. M.; Yao, J. Q.; Zhu, W. R.; Ye, X. D. Terahertz toroidal metasurface biosensor for sensitive distinction of lung cancer cells. Nanophotonics 2022, 11, 101–109.

[43]

Zhan, X. Y.; Yang, S.; Huang, G. R.; Yang, L. H.; Zhang, Y.; Tian, H. Y.; Xie, F. X.; De La Chapelle, M. L.; Yang, X.; Fu, W. L. Streptavidin-functionalized terahertz metamaterials for attomolar exosomal microRNA assay in pancreatic cancer based on duplex-specific nuclease-triggered rolling circle amplification. Biosens. Bioelectron. 2021, 188, 113314.

[44]

Soncin, I.; Sheng, J. P.; Chen, Q.; Foo, S.; Duan, K. B.; Lum, J.; Poidinger, M.; Zolezzi, F.; Karjalainen, K.; Ruedl, C. The tumour microenvironment creates a niche for the self-renewal of tumour-promoting macrophages in colon adenoma. Nat. Commun. 2018, 9, 582.

[45]

Wu, Y. Q.; Jiao, N.; Zhu, R. X.; Zhang, Y. D.; Wu, D. F.; Wang, A. J.; Fang, S.; Tao, L. W.; Li, Y. C.; Cheng, S.; et al. Identification of microbial markers across populations in early detection of colorectal cancer. Nat. Commun. 2021, 12, 3063.

Nano Research
Pages 7304-7311
Cite this article:
Wang P, Lou J, Yu Y, et al. An ultra-sensitive metasurface biosensor for instant cancer detection based on terahertz spectra. Nano Research, 2023, 16(5): 7304-7311. https://doi.org/10.1007/s12274-023-5386-7
Topics:

7444

Views

46

Crossref

20

Web of Science

47

Scopus

0

CSCD

Altmetrics

Received: 15 October 2022
Revised: 19 November 2022
Accepted: 04 December 2022
Published: 08 February 2023
© Tsinghua University Press 2023
Return