Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Metasurface biosensors have become the core label-free and rapid-detection technology in bioanalysis. Lung cancer and brain cancer are the first leading causes of cancer death among adults and adolescents, respectively, where poor early diagnosis results from expensive detection costs and time consumption. To tackle the above problems, here, we introduce a terahertz-domain metasurface biosensor for cancer diagnosis, relying on a perfectly symmetrical periodic surface structure, which significantly exhibits polarization-insensitivity at 2.05 THz and the high-sensitivity of 504 GHz/RIU (RIU = refractive index unit). According to the frequency shifts and transmittance variations, four cell types are successfully distinguished from each other. The minimum number of cells is required for thousands of cells to display the differences of spectra, which is 1/30 of clinical methods. Furthermore, the results were consistent with pathological results (the gold standard in clinic) by Gaussian curve fitting. The proposed biosensor has really achieved the characterization of cells in normal and cancerous state. This detection strategy dramatically reduced the cost of detection by reuse and time consumption was reduced to 1/20 of the pathology testing. In addition, it is flexible to set samples and easy to realize automatic operation due to the great polarization-insensitivity of the proposed biosensor, which can further reduce labor costs in the future. It is envisioned that the proposed biosensor will present immense potential in the fields of cancer detection, distinguishing different cancers, and identifying primary lesion cancer or metastatic cancer.
Siegel, R. L.; Miller, K. D.; Fuchs, H. E.; Jemal, A. Cancer statistics, 2021. CA A Cancer J. Clin. 2021, 71, 7–33.
Miller, K. D.; Ostrom, Q. T.; Kruchko, C.; Patil, N.; Tihan, T.; Cioffi, G.; Fuchs, H. E.; Waite, K. A.; Jemal, A.; Siegel, R. L. et al. Brain and other central nervous system tumor statistics, 2021. CA A Cancer J Clin. 2021, 71, 381–406.
Herbst, R. S.; Morgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature 2018, 553, 446–454.
Carter, B.; Zhao, K. J. The epigenetic basis of cellular heterogeneity. Nat. Rev. Genet. 2021, 22, 235–250.
He, Z. Y.; Chen, Z.; Tan, M. D.; Elingarami, S.; Liu, Y.; Li, T. T.; Deng, Y.; He, N. Y.; Li, S.; Fu, J. et al. A review on methods for diagnosis of breast cancer cells and tissues. Cell Proliferat. 2020, 53, e12822.
Min, L.; Wang, B. S.; Bao, H. R.; Li, X. R.; Zhao, L. B.; Meng, J. X.; Wang, S. T. Advanced nanotechnologies for extracellular vesicle-based liquid biopsy. Adv. Sci. (Weinh.) 2021, 8, 2102789.
Kang, K.; Park, J.; Kim, K.; Yu, K. J. Recent developments of emerging inorganic, metal and carbon-based nanomaterials for pressure sensors and their healthcare monitoring applications. Nano Res. 2021, 14, 3096–3111.
Ahmed, M. U.; Saaem, I.; Wu, P. C.; Brown, A. S. Personalized diagnostics and biosensors: A review of the biology and technology needed for personalized medicine. Crit. Rev. Biotechnol. 2014, 34, 180–196.
Beruete, M.; Jáuregui-López, I. Terahertz sensing based on metasurfaces. Adv. Opt. Mater. 2020, 8, 1900721.
Hillenbrand, R.; Taubner, T.; Keilmann, F. Phonon-enhanced light–matter interaction at the nanometre scale. Nature 2002, 418, 159–162.
Qin, W.; Miranowicz, A.; Li, P. B.; Lü, X. Y.; You, J. Q.; Nori, F. Exponentially enhanced light–matter interaction, cooperativities, and steady-state entanglement using parametric amplification. Phys. Rev. Lett. 2018, 120, 093601.
Smith, D. R.; Pendry, J. B.; Wiltshire, M. C. K. Metamaterials and negative refractive index. Science 2004, 305, 788–792.
Papasimakis, N.; Fedotov, V. A.; Savinov, V.; Raybould, T. A.; Zheludev, N. I. Electromagnetic toroidal excitations in matter and free space. Nat. Mater. 2016, 15, 263–271.
Kaelberer, T.; Fedotov, V. A.; Papasimakis, N.; Tsai, D. P.; Zheludev, N. I. Toroidal dipolar response in a metamaterial. Science 2010, 330, 1510–1512.
Gupta, M.; Singh, R. Toroidal metasurfaces in a 2D flatland. Rev. Phys. 2020, 5, 100040.
Ahmadivand, A.; Gerislioglu, B.; Ahuja, R.; Mishra, Y. K. Terahertz plasmonics: The rise of toroidal metadevices towards immunobiosensings. Mater. Today 2020, 32, 108–130.
Rodrigo, D.; Tittl, A.; Ait-Bouziad, N.; John-Herpin, A.; Limaj, O.; Kelly, C.; Yoo, D.; Wittenberg, N. J.; Oh, S. H.; Lashuel, H. A. et al. Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces. Nat. Commun. 2018, 9, 2160.
Lawrence, M.; Barton, D. R.; Dixon, J.; Song, J. H.; Van De Groep, J.; Brongersma, M. L.; Dionne, J. A. High quality factor phase gradient metasurfaces. Nat. Nanotechnol. 2020, 15, 956–961.
Wu, D.; Liu, Y. M.; Yu, L.; Yu, Z. Y.; Chen, L.; Li, R. F.; Ma, R.; Liu, C.; Zhang, J. Q. N.; Ye, H. Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor. Sci. Rep. 2017, 7, 45210.
Meng, F. Y.; Wu, Q.; Erni, D.; Wu, K.; Lee, J. C. Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor. IEEE Trans. Microwave Theory Techn. 2012, 60, 3013–3022.
Wang, C. Q.; Jiang, X. F.; Zhao, G. M.; Zhang, M. Z.; Hsu, C. W.; Peng, B.; Stone, A. D.; Jiang, L.; Yang, L. Electromagnetically induced transparency at a chiral exceptional point. Nat. Phys. 2020, 16, 334–340.
Marangos, J. P. Electromagnetically induced transparency. J. Mod. Opt. 1998, 45, 471–503.
Xiang, Z. X.; Tang, C. X.; Chang, C.; Liu, G. Z. A new viewpoint and model of neural signal generation and transmission: Signal transmission on unmyelinated neurons. Nano Res. 2021, 14, 590–600.
Tan, X. X.; Wu, K. J.; Liu, S.; Yuan, Y. F.; Chang, C.; Xiong, W. Minimal-invasive enhancement of auditory perception by terahertz wave modulation. Nano Res. 2022, 15, 5235–5244.
Wang, K. C.; Wang, S. M.; Yang, L. X.; Wu, Z.; Zeng, B. Q.; Gong, Y. B. THz trapped ion model and THz spectroscopy detection of potassium channels. Nano Res. 2022, 15, 3825–3833.
Lou, J.; Xu, X.; Huang, Y. D.; Yu, Y.; Wang, J.; Fang, G. Y.; Liang, J. G.; Fan, C. H.; Chang, C. Optically controlled ultrafast terahertz metadevices with ultralow pump threshold. Small 2021, 17, 2104275.
Wang, P. L.; Lou, J.; Fang, G. Y.; Chang, C. Progress on cutting-edge infrared-terahertz biophysics. IEEE Trans. Microwave Theory Techn. 2022, 70, 5117–5140.
Ferguson, B.; Zhang, X. C. Materials for terahertz science and technology. Nat. Mater. 2002, 1, 26–33.
Zhang, X. C.; Shkurinov, A.; Zhang, Y. Extreme terahertz science. Nat. Photon. 2017, 11, 16–18.
Sengupta, K.; Nagatsuma, T.; Mittleman, D. M. Terahertz integrated electronic and hybrid electronic–photonic systems. Nat. Electron. 2018, 1, 622–635.
Song, B.; Shu, Y. S. Cell vibron polariton resonantly self-confined in the myelin sheath of nerve. Nano Res. 2020, 13, 38–44.
Siegel, P. H. Terahertz technology in biology and medicine. IEEE Trans. Microwave Theory Techn. 2004, 52, 2438–2447.
Dhillon, S. S.; Vitiello, M. S.; Linfield, E. H.; Davies, A. G.; Hoffmann, M. C.; Booske, J.; Paoloni, C.; Gensch, M.; Weightman, P.; Williams, G. P. et al. The 2017 terahertz science and technology roadmap. J. Phys. D Appl. Phys. 2017, 50, 043001.
Li, N.; Peng, D. L.; Zhang, X. J.; Shu, Y. S.; Zhang, F.; Jiang, L.; Song, B. Demonstration of biophoton-driven DNA replication via gold nanoparticle-distance modulated yield oscillation. Nano Res. 2021, 14, 40–45.
Lou, J.; Jiao, Y. N.; Yang, R. S.; Huang, Y. D.; Xu, X.; Zhang, L.; Ma, Z. F.; Yu, Y.; Peng, W. Y.; Yuan, Y. F. et al. Calibration-free, high-precision, and robust terahertz ultrafast metasurfaces for monitoring gastric cancers. Proc. Nat. l Acad. Sci. USA 2022, 119, e2209218119.
Yan, X.; Yang, M. S.; Zhang, Z.; Liang, L. J.; Wei, D. Q.; Wang, M.; Zhang, M.; Wang, T.; Liu, L. H.; Xie, J. H. et al. The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells. Biosen. Bioelectron. 2019, 126, 485–492.
Keshavarz, A.; Vafapour, Z. Water-based terahertz metamaterial for skin cancer detection application. IEEE Sensors J. 2019, 19, 1519–1524.
Vafapour, Z.; Troy, W.; Rashidi, A. Colon cancer detection by designing and analytical evaluation of a water-based THz metamaterial perfect absorber. IEEE Sensors J. 2021, 21, 19307–19313.
Zhang, C. B.; Xue, T. J.; Zhang, J.; Liu, L. H.; Xie, J. H.; Wang, G. M.; Yao, J. Q.; Zhu, W. R.; Ye, X. D. Terahertz toroidal metasurface biosensor for sensitive distinction of lung cancer cells. Nanophotonics 2022, 11, 101–109.
Zhan, X. Y.; Yang, S.; Huang, G. R.; Yang, L. H.; Zhang, Y.; Tian, H. Y.; Xie, F. X.; De La Chapelle, M. L.; Yang, X.; Fu, W. L. Streptavidin-functionalized terahertz metamaterials for attomolar exosomal microRNA assay in pancreatic cancer based on duplex-specific nuclease-triggered rolling circle amplification. Biosens. Bioelectron. 2021, 188, 113314.
Soncin, I.; Sheng, J. P.; Chen, Q.; Foo, S.; Duan, K. B.; Lum, J.; Poidinger, M.; Zolezzi, F.; Karjalainen, K.; Ruedl, C. The tumour microenvironment creates a niche for the self-renewal of tumour-promoting macrophages in colon adenoma. Nat. Commun. 2018, 9, 582.
Wu, Y. Q.; Jiao, N.; Zhu, R. X.; Zhang, Y. D.; Wu, D. F.; Wang, A. J.; Fang, S.; Tao, L. W.; Li, Y. C.; Cheng, S.; et al. Identification of microbial markers across populations in early detection of colorectal cancer. Nat. Commun. 2021, 12, 3063.