AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

H2O2 actuated molybdenum oxide nanodots: Multi-enzyme-like activities, leverage of Fenton reaction, and dual-mode sensitive detection of alendronate sodium

Siqi WangYao JinWenhui AiXiufeng Wang( )Zhiqing ZhangTing ZhouGuodong ZhangFang Wang
Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
Show Author Information

Graphical Abstract

A colorimetric and fluorescent dual-mode sensitive nanozyme sensor for effectively detection alendronate sodium was constructed, which utilized the leverage of Fenton reaction to enhance enzyme-like activities of molybdenum oxide nanodots.

Abstract

Unexpected benefits to the catalytic performance of materials often originate from the presence of surface defects. Here, novel D-penicillamine modified molybdenum oxide nanodots, with abundant oxygen vacancy defects, were fabrication by a mild, simple, and cost-effective method. Ultraviolet–visible (UV–Vis) absorption spectra analysis showed that the nanodots had peroxidase-like and catalase-like activities. The reactive oxygen species were probed by electronic paramagnetic resonance technique and spectroscopic methods, demonstrating that the nanodots also had oxidase-like activity. Interestingly, the peroxidase-like activity of nanodots was synergistically enhanced in the presence of ferrous ions or ferric ions. Remarkably, less than nanomolar levels of ferrous ions were required to display this phenomenon, meaning Fenton reagent acted as leverage. Based on this, a sensitive colorimetric and fluorescent dual-mode sensor for alendronate sodium was developed. The linear ranges for colorimetric and fluorescence analysis were 0.2–2.5 and 0.2–2.0 μM, with detection limits of 31.21 and 71.84 nM, correspondingly. The method has a simple large-scale material preparation process with higher sensitivity and shorter reaction time, which can inspire and enlighten the design of nanozyme sensors.

Electronic Supplementary Material

Download File(s)
12274_2023_5387_MOESM1_ESM.pdf (1 MB)

References

[1]

Wei, H.; Gao, L. Z.; Fan, K. L.; Liu, J. W.; He, J. Y.; Qu, X. G.; Dong, S. J.; Wang, E. K.; Yan, X. Y. Nanozymes: A clear definition with fuzzy edges. Nano Today 2021, 40, 101269.

[2]

Liang, M. M.; Yan, X. Y. Nanozymes: From new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019, 52, 2190–2200.

[3]

Li, X.; Zhu, H. J.; Liu, P.; Wang, M. Z.; Pan, J. M.; Qiu, F. X.; Ni, L.; Niu, X. H. Realizing selective detection with nanozymes: Strategies and trends. TrAC Trends Analyt. Chem. 2021, 143, 116379.

[4]

Chen, L. F.; Lin, M. T.; Noreldeen, H. A. A.; Peng, H. P.; Deng, H. H.; He, S. B.; Chen, W. Fructose oxidase-like activity of CuO nanoparticles supported by phosphate for a tandem catalysis-based fructose sensor. Anal. Chim. Acta 2022, 1220, 340064.

[5]

Qiu, Z. W.; Duan, W.; Cao, S. F.; Zeng, T.; Zhao, T. Y.; Huang, J. K.; Lu, X. Q.; Zeng, J. B. Highly specific colorimetric probe for fluoride by triggering the intrinsic catalytic activity of a AgPt-Fe3O4 hybrid nanozyme encapsulated in SiO2 shells. Environ. Sci. Technol. 2022, 56, 1713–1723.

[6]

Liu, B. W.; Han, X.; Liu, J. W. Iron oxide nanozyme catalyzed synthesis of fluorescent polydopamine for light-up Zn2+ detection. Nanoscale 2016, 8, 13620–13626.

[7]

Huang, L.; Chen, J. X.; Gan, L. F.; Wang, J.; Dong, S. J. Single-atom nanozymes. Sci. Adv. 2019, 5, eaav5490.

[8]

Wu, Y.; Xu, W. Q.; Jiao, L.; Tang, Y. J.; Chen, Y. F.; Gu, W. L.; Zhu, C. Z. Defect engineering in nanozymes. Mater. Today 2022, 52, 327–347.

[9]

Liang, X.; Han, L. White peroxidase-mimicking nanozymes: Colorimetric pesticide assay without interferences of O2 and color. Adv. Funct. Mater. 2020, 30, 2001933.

[10]

Zhao, X. T.; Li, S.; Yu, X. X.; Gang, R. T.; Wang, H. In situ growth of CeO2 on g-C3N4 nanosheets toward a spherical g-C3N4/CeO2 nanozyme with enhanced peroxidase-like catalysis: A selective colorimetric analysis strategy for Mercury(II). Nanoscale 2020, 12, 21440–21440.

[11]

Parmekar, M. V.; Salker, A. V. Highly tuned cobalt-doped MnO2 nanozyme as remarkably efficient uricase mimic. Appl. Nanosci. 2020, 10, 317–328.

[12]

Gharib, M.; Kornowski, A.; Noei, H.; Parak, W. J.; Chakraborty, I. Protein-protected porous bimetallic AgPt nanoparticles with PH-switchable peroxidase/catalase-mimicking activity. ACS Mater. Lett. 2019, 1, 310–319.

[13]

Liu, B. W.; Liu, J. W. Surface modification of nanozymes. Nano Res. 2017, 10, 1125–1148.

[14]

Wang, S. Q.; Wang, X. F.; Du, B. Y.; Jin, Y.; Ai, W. H.; Zhang, G. D.; Zhou, T.; Wang, F.; Zhang, Z. Q. Hydrogen peroxide-assisted and histidine- stabilized copper-containing nanozyme for efficient degradation of various organic dyes. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 287, 122084.

[15]

Pacchioni, G. Oxygen vacancy: The invisible agent on oxide surfaces. Chemphyschem 2003, 4, 1041–1047.

[16]

Scorza, E.; Birkenheuer, U.; Pisani, C. The oxygen vacancy at the surface and in bulk MgO: An embedded-cluster study. J. Chem. Phys. 1997, 107, 9645–9658.

[17]

Wang, Z. L.; Lin, R. J.; Huo, Y. N.; Li, H. X.; Wang, L. Z. Formation, detection, and function of oxygen vacancy in metal oxides for solar energy conversion. Adv. Funct. Mater. 2022, 32, 2109503.

[18]

Yuan, X.; Wang, L. L.; Hu, M. M.; Zhang, L. L.; Chen, H.; Zhang, D. L.; Wang, Z. M.; Li, T.; Zhong, M. J.; Xu, L. J. et al. Oxygen vacancy-driven reversible free radical catalysis for environment-adaptive cancer chemodynamic therapy. Angew. Chem., Int. Ed. 2021, 60, 20943–20951.

[19]

Kim, Y. M.; He, J.; Biegalski, M. D.; Ambaye, H.; Lauter, V.; Christen, H. M.; Pantelides, S. T.; Pennycook, S. J.; Kalinin, S. V.; Borisevich, A. Y. Probing oxygen vacancy concentration and homogeneity in solid-oxide fuel-cell cathode materials on the subunit-cell level. Nat. Mater. 2012, 11, 888–894.

[20]

Qin, Y. X.; Liu, S. C.; Shen, X.; Gui, H. Y.; Bai, Y. N. Enhanced gas sensing performance of Bi2MoO6 with introduction of oxygen vacancy: Coupling of experiments and first-principles calculations. J. Alloys Compd. 2022, 894, 162534.

[21]

Zhang, Y.; Li, D. X.; Tan, J. S.; Chang, Z. S.; Liu, X. Y.; Ma, W. S.; Xu, Y. H. Near-infrared regulated nanozymatic/photothermal/photodynamic triple-therapy for combating multidrug-resistant bacterial infections via oxygen-vacancy molybdenum trioxide nanodots. Small 2021, 17, 2005739.

[22]

Liu, H. M.; Cheng, R.; Dong, X. H.; Zhu, S.; Zhou, R. Y.; Yan, L.; Zhang, C. Y.; Wang, Q.; Gu, Z. J.; Zhao, Y. L. BiO2−x nanosheets as radiosensitizers with catalase-like activity for hypoxia alleviation and enhancement of the radiotherapy of tumors. Inorg. Chem. 2020, 59, 3482–3493.

[23]

Zhao, N.; Yang, F. E.; Zhao, C. Y.; Lv, S. W.; Wang, J.; Liu, J. M.; Wang, S. Construction of pH-dependent nanozymes with oxygen vacancies as the high-efficient reactive oxygen species scavenger for oral-administrated anti-inflammatory therapy. Adv. Healthcare Mater. 2021, 10, 2101618.

[24]

Gong, F.; Yang, N. L.; Wang, Y.; Zhuo, M. P.; Zhao, Q.; Wang, S.; Li, Y. G.; Liu, Z.; Chen, Q.; Cheng, L. Oxygen-deficient bimetallic oxide FeWOx nanosheets as peroxidase-like nanozyme for sensing cancer via photoacoustic imaging. Small 2020, 16, 2003496.

[25]

Lu, W. H.; Chen, J.; Kong, L. S.; Zhu, F.; Feng, Z. Y.; Zhan, J. H. Oxygen vacancies modulation Mn3O4 nanozyme with enhanced oxidase-mimicking performance for L-cysteine detection. Sens. Actuators B Chem. 2021, 333, 129560.

[26]

Zhao, Y. L.; Wang, Y. W.; Mathur, A.; Wang, Y. Q.; Maheshwari, V.; Su, H. J.; Liu, J. W. Fluoride-capped nanoceria as a highly efficient oxidase-mimicking nanozyme: Inhibiting product adsorption and increasing oxygen vacancies. Nanoscale 2019, 11, 17841–17850.

[27]

Cummings, S. R.; Santora, A. C.; Black, D. M.; Russell, R. G. G. History of alendronate. Bone 2020, 137, 115411.

[28]

Russell, R. G. G. Bisphosphonates: The first 40 years. Bone 2011, 49, 2–19.

[29]

Alhakamy, N. A.; Ahmed, O. A. A.; Fahmy, U. A.; Md, S. Apamin-conjugated alendronate sodium nanocomplex for management of pancreatic cancer. Pharmaceuticals (Basel) 2021, 14, 729.

[30]

Lu, T. L.; Hu, H. J.; Zhao, W.; Chen, T. RP-HPLC analysis of hydrophobic alendronate amidated derivatives. J. Liq. Chromatogr. Relat. Technol. 2010, 33, 349–361.

[31]

Reddy, P. S.; Babu, K. S.; Kumar, N.; Balakrishna, P. A validated stability indicating ion exchange chromatographic method for the quantification of alendronate, phosphite and phosphate in alendronate sodium tablets and analysis of in-vitro dissolution samples. J. Chil. Chem. Soc. 2012, 57, 1232–1234.

[32]

Liu, Q. W.; Wu, Y. W.; Zhang, J. W.; Chen, K. J.; Huang, C. J.; Chen, H.; Qiu, X. Q. Plasmonic MoO3−x nanosheets with tunable oxygen vacancies as efficient visible light responsive photocatalyst. Appl. Surf. Sci. 2019, 490, 395–402.

[33]

Tan, X. J.; Wang, L. Z.; Cheng, C.; Yan, X. F.; Shen, B.; Zhang, J. L. Plasmonic MoO3−x@MoO3 nanosheets for highly sensitive SERS detection through nanoshell-isolated electromagnetic enhancement. Chem. Commun. 2016, 52, 2893–2896.

[34]

Kim, H. S.; Cook, J. B.; Lin, H.; Ko, J. S.; Tolbert, S. H.; Ozolins, V.; Dunn, B. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x. Nat. Mater. 2017, 16, 454–460.

[35]

Luo, Z.; Miao, R.; Huan, T. D.; Mosa, I. M.; Poyraz, A. S.; Zhong, W.; Cloud, J. E.; Kriz, D. A.; Thanneeru, S.; He, J. et al. Mesoporous MoO3−x material as an efficient electrocatalyst for hydrogen evolution reactions. Adv. Energy Mater. 2016, 6, 1600528.

[36]

Li, X. Y.; Xu, H. C.; Hu, W. X.; Zhou, H. R.; Zhu, Y. M.; Lu, L. F.; Si, C. L. One step synthesis of Mo-doped carbon microspheres for valorization corncob to levulinic acid. Ind. Crops Prod. 2022, 184, 115019.

[37]

Jung, S.; Lee, J.; Kim, U.; Park, H. Solution-processed molybdenum oxide with hydroxyl radical-induced oxygen vacancy as an efficient and stable interfacial layer for organic solar cells. Sol. RRL 2020, 4, 1900420.

[38]

Pacholik, G.; Enzlberger, L.; Benzer, A.; Rameshan, R.; Latschka, M.; Rameshan, C.; Föttinger, K. In situ XPS studies of MoS2-based CO2 hydrogenation catalysts. J. Phys. D Appl. Phys. 2021, 54, 324002.

[39]

An, K.; Alayoglu, S.; Ewers, T.; Somorjai, G. A. Colloid chemistry of nanocatalysts: A molecular view. J. Colloid Interf. Sci. 2012, 373, 1–13.

[40]

Jiang, B.; Duan, D. M.; Gao, L. Z.; Zhou, M. J.; Fan, K. L.; Tang, Y.; Xi, J. Q.; Bi, Y. H.; Tong, Z.; Gao, G. F. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506–1520.

[41]

Chang, M. Y.; Wang, M.; Wang, M. F.; Shu, M. M.; Ding, B. B.; Li, C. X.; Pang, M. L.; Cui, S. Z.; Hou, Z. Y.; Lin, J. A multifunctional cascade bioreactor based on hollow-structured Cu2MoS4 for synergetic cancer chemo-dynamic therapy/starvation therapy/phototherapy/immunotherapy with remarkably enhanced efficacy. Adv. Mater. 2019, 31, 1905271.

[42]

Su, L.; Qin, W. J.; Zhang, H. G.; Rahman, Z. U.; Ren, C. L.; Ma, S. D.; Chen, X. G. The peroxidase/catalase-like activities of MFe2O4 (M = Mg, Ni, Cu) MNPs and their application in colorimetric biosensing of glucose. Biosens. Bioelectron. 2015, 63, 384–391.

[43]

Ma, W. J.; Wang, N.; Fan, Y. N.; Tong, T. Z.; Han, X. J.; Du, Y. C. Non-radical-dominated catalytic degradation of bisphenol a by ZIF-67 derived nitrogen-doped carbon nanotubes frameworks in the presence of peroxymonosulfate. Chem. Eng. J. 2018, 336, 721–731.

[44]

Nayak, J.; Chilivery, R.; Kumar, A. K.; Begum, G.; Rana, R. K. A bioinspired assembly to simultaneously heterogenize polyoxometalates as nanozymes and encapsulate enzymes in a microstructure endowing efficient peroxidase-mimicking activity. ACS Sustainable Chem. Eng. 2021, 9, 15819–15829.

[45]

Shen, B.; Dong, C. C.; Ji, J. H.; Xing, M. Y.; Zhang, J. L. Efficient Fe(III)/Fe(II) cycling triggered by MoO2 in fenton reaction for the degradation of dye molecules and the reduction of Cr(VI). Chin. Chem. Lett. 2019, 30, 2205–2210.

[46]

Jin, L. Y.; Dong, Y. M.; Wu, X. M.; Cao, G. X.; Wang, G. L. Versatile and amplified biosensing through enzymatic cascade reaction by coupling alkaline phosphatase in situ generation of photoresponsive nanozyme. Anal. Chem. 2015, 87, 10429–10436.

[47]

Zhang, P.; Xia, W. Q.; Deng, P.; Min, Y. H.; Tan, J.; Wang, Y.; Fu, W. S. Fe(III)-mediated reversible catalytic activity of MoS2 nanozymes for bisphosphonate drug sensing. Colloids Surf. B Biointerf. 2021, 206, 111953.

[48]

Kuljanin, J.; Janković, I.; Nedeljković, J.; Prstojević, D.; Marinković, V. Spectrophotometric determination of alendronate in pharmaceutical formulations via complex formation with Fe(III) ions. J. Pharm. Biomed. Anal. 2002, 28, 1215–1220.

[49]

Alarfaj, N. A.; El-Razeq, S. A. A.; Al-Qahtani, F. N. Spectrophotometric determination of alendronate sodium in bulk drug and in pharmaceutical formulation. Asian J. Chem. 2011, 23, 697–700.

[50]

Al Deeb, S. K.; Hamdan, I. I.; Al Najjar, S. M. Spectroscopic and HPLC methods for the determination of alendronate in tablets and urine. Talanta 2004, 64, 695–702.

[51]

Jia, C. Y.; Shang, J. C.; Wang, Y.; Bai, L. J.; Tong, C.; Chen, Y. J.; Zhang, P. Copper(II)-mediated sliver nanoclusters as a fluorescent platform for highly sensitive detection of alendronate sodium. Sens. Actuators B Chem. 2018, 269, 271–277.

[52]

Xia, M.; Zhao, X. E.; Sun, J.; Zheng, Z. J.; Zhu, S. Y. Graphene quantum dots combined with the oxidase-mimicking activity of Ce4+ for ratiometric fluorescent detection of Ce4+ and alendronate sodium. Sens. Actuators B Chem. 2020, 319, 128321.

[53]

Elmalla, S. F.; Mansour, F. R. A simple innovative spectrofluorometric method for the determination of alendronate in bulk and in pharmaceutical tablets. Luminescence 2019, 34, 375–381.

[54]

Heli, H.; Faramarzi, F.; Sattarahmady, N. Voltammetric investigation and amperometric detection of the bisphosphonate drug sodium alendronate using a copper nanoparticles-modified electrode. J. Solid State Electrochem. 2010, 14, 2275–2283.

[55]

Nirala, N. R.; Pandey, S.; Bansal, A.; Singh, V. K.; Mukherjee, B.; Saxena, P. S.; Srivastava, A. Different shades of cholesterol: Gold nanoparticles supported on MoS2 nanoribbons for enhanced colorimetric sensing of free cholesterol. Biosens. Bioelectron. 2015, 74, 207–213.

[56]

Sels, B. F.; De Vos, D. E.; Grobet, P. J.; Jacobs, P. A. Kinetic and spectroscopic study of 1O2 generation from H2O2 catalyzed by LDH-MoO42− (LDH = layered double hydroxide). 3.0.CO;2-#">Chem. —Eur. J. 2001, 7, 2547–2556.

[57]

Hu, X.; Li, F. Y.; Xia, F.; Guo, X.; Wang, N.; Liang, L. L.; Yang, B.; Fan, K. L.; Yan, X. Y.; Ling, D. S. Biodegradation-mediated enzymatic activity-tunable molybdenum oxide nanourchins for tumor-specific cascade catalytic therapy. J. Am. Chem. Soc. 2020, 142, 1636–1644.

[58]

Chen, Y.; Chen, T. M.; Wu, X. J.; Yang, G. W. Oxygen vacancy-engineered PEGylated MoO3−x nanoparticles with superior sulfite oxidase mimetic activity for vitamin B1 detection. Small 2019, 15, 1903153.

Nano Research
Pages 12106-12115
Cite this article:
Wang S, Jin Y, Ai W, et al. H2O2 actuated molybdenum oxide nanodots: Multi-enzyme-like activities, leverage of Fenton reaction, and dual-mode sensitive detection of alendronate sodium. Nano Research, 2023, 16(10): 12106-12115. https://doi.org/10.1007/s12274-023-5387-6
Topics:
Part of a topical collection:

8313

Views

3

Crossref

2

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 18 October 2022
Revised: 23 November 2022
Accepted: 04 December 2022
Published: 08 February 2023
© Tsinghua University Press 2022
Return