Graphical Abstract

Cancer-associated fibroblasts (CAFs) play an important role in facilitating the progression of triple-negative breast cancer (TNBC) by deteriorating the tumor mechanical microenvironment (TMME). Herein, we designed a CAFs-targeting nanomedicine by conjugating doxorubicin (DOX)-loaded hydroxyethyl starch-IR780 nanoparticles (NPs) with Cys-Arg-Glu-Lys-Ala (CREKA) peptide, which had a special affinity for fibronectin overexpressed on CAFs. After systemic administration, the NPs efficiently targeted CAFs and generated hyperthermia upon light irradiation, decreasing CAFs through the combination of chemo- and photothermal-therapies. Thus, a series of changes in TMME were achieved by reducing CAFs, which further disrupted the niche of cancer stem cells (CSCs) to affect their survival. As a result, the tumor growth was significantly inhibited in 4T1 tumors. The strategy of TMME modulation and CSCs elimination through targeting and depleting CAFs provides a novel therapeutic treatment for desmoplastic solid tumors.
Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 2016, 16, 582–598.
Biffi, G.; Tuveson, D. A. Diversity and biology of cancer-associated fibroblasts. Physiol. Rev. 2021, 101, 147–176.
Hu, D. D.; Li, Z. Q.; Zheng, B.; Lin, X. X.; Pan, Y. H.; Gong, P. R.; Zhuo, W. Y.; Hu, Y. J.; Chen, C.; Chen, L. N. et al. Cancer-associated fibroblasts in breast cancer: Challenges and opportunities. Cancer. Commun. 2022, 42, 401–434.
Bulle, A.; Lim, K. H. Beyond just a tight fortress: Contribution of stroma to epithelial-mesenchymal transition in pancreatic cancer. Signal Transduct. Target. Ther. 2020, 5, 249.
Hyun, J.; Kim, H. W. Leveraging cellular mechano-responsiveness for cancer therapy. Trends Mol. Med. 2022, 28, 155–169.
Taddei, M. L.; Giannoni, E.; Comito, G.; Chiarugi, P. Microenvironment and tumor cell plasticity: An easy way out. Cancer Lett. 2013, 341, 80–96.
Nia, H. T.; Munn, L. L.; Jain, R. K. Physical traits of cancer. Science 2020, 370, eaaz0868.
Levental, K. R.; Yu, H. M.; Kass, L.; Lakins, J. N.; Egeblad, M.; Erler, J. T.; Fong, S. F. T.; Csiszar, K.; Giaccia, A.; Weninger, W. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 2009, 139, 891–906.
Tse, J. M.; Cheng, G.; Tyrrell, J. A.; Wilcox-Adelman, S. A.; Boucher, Y.; Jain, R. K.; Munn, L. L. Mechanical compression drives cancer cells toward invasive phenotype. Proc. Natl. Acad. Sci. USA 2012, 109, 911–916.
Stylianopoulos, T.; Jain, R. K. Combining two strategies to improve perfusion and drug delivery in solid tumors. Proc. Natl. Acad. Sci. USA 2013, 110, 18632–18637.
Stylianopoulos, T.; Munn, L. L.; Jain, R. K. Reengineering the physical microenvironment of tumors to improve drug delivery and efficacy: From mathematical modeling to bench to bedside. Trends Cancer 2018, 4, 292–319.
Su, S. C.; Chen, J. N.; Yao, H. R.; Liu, J.; Yu, S. B.; Lao, L. Y.; Wang, M. H.; Luo, M. L.; Xing, Y.; Chen, F. et al. CD10+GPR77+ cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. Cell 2018, 172, 841–856.e16.
Heddleston, J. M.; Li, Z.; Lathia, J. D.; Bao, S.; Hjelmeland, A. B.; Rich, J. N. Hypoxia inducible factors in cancer stem cells. Br. J. Cancer 2010, 102, 789–795.
De Andrés, J. L.; Griñán-Lisón, C.; Jiménez, G.; Marchal, J. A. Cancer stem cell secretome in the tumor microenvironment: A key point for an effective personalized cancer treatment. J. Hematol. Oncol. 2020, 13, 136.
Saygin, C.; Matei, D.; Majeti, R.; Reizes, O.; Lathia, J. D. Targeting cancer stemness in the clinic: From hype to hope. Cell Stem Cell 2019, 24, 25–40.
Clara, J. A.; Monge, C.; Yang, Y. Z.; Takebe, N. Targeting signalling pathways and the immune microenvironment of cancer stem cells—A clinical update. Nat. Rev. Clin. Oncol. 2020, 17, 204–232.
Yang, L. Q.; Shi, P. F.; Zhao, G. C.; Xu, J.; Peng, W.; Zhang, J. Y.; Zhang, G. H.; Wang, X. W.; Dong, Z.; Chen, F. et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct. Target. Ther. 2020, 5, 8.
Wu, F. L.; Yang, J.; Liu, J. J.; Wang, Y.; Mu, J. T.; Zeng, Q. X.; Deng, S. Z.; Zhou, H. M. Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduct. Target. Ther. 2021, 6, 218.
Chen, J. T.; Ding, Z. Y.; Li, S.; Liu, S.; Xiao, C.; Li, Z. F.; Zhang, B. X.; Chen, X. P.; Yang, X. L. Targeting transforming growth factor-β signaling for enhanced cancer chemotherapy. Theranostics 2021, 11, 1345–1363.
Froeling, F. E. M.; Feig, C.; Chelala, C.; Dobson, R.; Mein, C. E.; Tuveson, D. A.; Clevers, H.; Hart, I. R.; Kocher, H. M. Retinoic acid-induced pancreatic stellate cell quiescence reduces paracrine Wnt-β-catenin signaling to slow tumor progression. Gastroenterology 2011, 141, 1486–1497.e14.
Wang, L. Y.; Liu, Z. M.; Zhou, Q.; Gu, S. F.; Liu, X. S.; Huang, J. X.; Jiang, H. P.; Wang, H. F.; Cao, L. P.; Sun, J. H. et al. Prodrug nanoparticles rationally integrating stroma modification and chemotherapy to treat metastatic pancreatic cancer. Biomaterials 2021, 278, 121176.
Zhou, S. Y.; Zhen, Z. P.; Paschall, A. V.; Xue, L. J.; Yang, X. Y.; Blackwell, A. G. B.; Cao, Z. W.; Zhang, W. Z.; Wang, M. Z.; Teng, Y. et al. FAP-targeted photodynamic therapy mediated by ferritin nanoparticles elicits an immune response against cancer cells and cancer associated fibroblasts. Adv. Funct. Mater. 2021, 31, 2007017.
Feng, J. X.; Xu, M. J.; Wang, J. H.; Zhou, S. L.; Liu, Y. P.; Liu, S. S.; Huang, Y. K.; Chen, Y.; Chen, L.; Song, Q. X. et al. Sequential delivery of nanoformulated α-mangostin and triptolide overcomes permeation obstacles and improves therapeutic effects in pancreatic cancer. Biomaterials 2020, 241, 119907.
Wu, H. L.; Hu, H.; Wan, J. L.; Li, Y. M.; Wu, Y. X.; Tang, Y. X.; Xiao, C.; Xu, H. B.; Yang, X. L.; Li, Z. F. Hydroxyethyl starch stabilized polydopamine nanoparticles for cancer chemotherapy. Chem. Eng. J. 2018, 349, 129–145.
Xiong, Y. X.; Wang, Z. B.; Wang, Q.; Deng, Q. Y.; Chen, J. T.; Wei, J. S.; Yang, X. Q.; Yang, X. L.; Li, Z. F. Tumor-specific activatable biopolymer nanoparticles stabilized by hydroxyethyl starch prodrug for self-amplified cooperative cancer therapy. Theranostics 2022, 12, 944–962.
Wang, H. M.; Hu, H.; Yang, H.; Li, Z. F. Hydroxyethyl starch based smart nanomedicine. RSC Adv. 2021, 11, 3226–3240.
Xiao, C.; Hu, H.; Yang, H.; Li, S.; Zhou, H.; Ruan, J.; Zhu, Y. T.; Yang, X. L.; Li, Z. F. Colloidal hydroxyethyl starch for tumor-targeted platinum delivery. Nanoscale Adv. 2019, 1, 1002–1012.
Zhou, Q.; Li, Y. H.; Zhu, Y. H.; Yu, C.; Jia, H. B.; Bao, B. H.; Hu, H.; Xiao, C.; Zhang, J. Q.; Zeng, X. F. et al. Co-delivery nanoparticle to overcome metastasis promoted by insufficient chemotherapy. J. Control. Release 2018, 275, 67–77.
Hu, H.; Li, Y. H.; Zhou, Q.; Ao, Y. X.; Yu, C.; Wan, Y.; Xu, H. B.; Li, Z. F.; Yang, X. L. Redox-sensitive hydroxyethyl starch-doxorubicin conjugate for tumor targeted drug delivery. ACS Appl. Mater. Interfaces 2016, 8, 30833–30844.
Luo, Q.; Wang, P. X.; Miao, Y. Q.; He, H. B.; Tang, X. A novel 5-fluorouracil prodrug using hydroxyethyl starch as a macromolecular carrier for sustained release. Carbohydr. Polym. 2012, 87, 2642–2647.
Hu, H.; Wan, J. L.; Huang, X. T.; Tang, Y. X.; Xiao, C.; Xu, H. B.; Yang, X. L.; Li, Z. F. iRGD-decorated reduction-responsive nanoclusters for targeted drug delivery. Nanoscale 2018, 10, 10514–10527.
Zhai, Y. H.; Liu, M.; Yang, T.; Luo, J.; Wei, C. G.; Shen, J. K.; Song, X.; Ke, H. T.; Sun, P.; Guo, M. et al. Self-activated arsenic manganite nanohybrids for visible and synergistic thermo/immuno-arsenotherapy. J. Control. Release 2022, 350, 761–776.
Iqbal, H.; Yang, T.; Li, T.; Zhang, M. Y.; Ke, H. T.; Ding, D. W.; Deng, Y. B.; Chen, H. B. Serum protein-based nanoparticles for cancer diagnosis and treatment. J. Control. Release 2021, 329, 997–1022.
Li, Y. H.; Wu, Y. X.; Chen, J. T.; Wan, J. L.; Xiao, C.; Guan, J. K.; Song, X. L.; Li, S. Y.; Zhang, M. M.; Cui, H. C. et al. A simple glutathione-responsive turn-on theranostic nanoparticle for dual-modal imaging and chemo-photothermal combination therapy. Nano Lett. 2019, 19, 5806–5817.
Wang, X. X.; Ye, N. B.; Xu, C.; Xiao, C.; Zhang, Z. J.; Deng, Q. Y.; Li, S. Y.; Li, J. Y.; Li, Z. F.; Yang, X. L. Hyperbaric oxygen regulates tumor mechanics and augments abraxane and gemcitabine antitumor effects against pancreatic ductal adenocarcinoma by inhibiting cancer-associated fibroblasts. Nano Today 2022, 44, 101458.
Liu, X.; Ye, N. B.; Xiao, C.; Wang, X. X.; Li, S. Y.; Deng, Y. H.; Yang, X. Q.; Li, Z. F.; Yang, X. L. Hyperbaric oxygen regulates tumor microenvironment and boosts commercialized nanomedicine delivery for potent eradication of cancer stem-like cells. Nano Today 2021, 40, 101248.
Zhao, Y.; Xie, R. S.; Yodsanit, N.; Ye, M. Z.; Wang, Y. Y.; Gong, S. Q. Biomimetic fibrin-targeted and H2O2-responsive nanocarriers for thrombus therapy. Nano Today 2020, 35, 100986.
Gong, Z. R.; Chen, M.; Ren, Q. S.; Yue, X. L.; Dai, Z. F. Fibronectin-targeted dual-acting micelles for combination therapy of metastatic breast cancer. Signal Transduct. Target. Ther. 2020, 5, 12.
Zhang, Z. J.; Deng, Q. Y.; Xiao, C.; Li, Z. F.; Yang, X. L. Rational design of nanotherapeutics based on the five features principle for potent elimination of cancer stem cells. Acc. Chem. Res. 2022, 55, 526–536.
Li, R.; Li, Y. P.; Zhang, J. H.; Liu, Q. H.; Wu, T.; Zhou, J.; Huang, H.; Tang, Q.; Huang, C. Y.; Huang, Y. et al. Targeted delivery of celastrol to renal interstitial myofibroblasts using fibronectin-binding liposomes attenuates renal fibrosis and reduces systemic toxicity. J. Control. Release 2020, 320, 32–44.
Chen, X. M.; Song, E. W. Turning foes to friends: Targeting cancer-associated fibroblasts. Nat. Rev. Drug Discov. 2019, 18, 99–115.
Jain, R. K.; Martin, J. D.; Stylianopoulos, T. The role of mechanical forces in tumor growth and therapy. Annu. Rev. Biomed. Eng. 2014, 16, 321–346.
Nia, H. T.; Liu, H.; Seano, G.; Datta, M.; Jones, D.; Rahbari, N.; Incio, J.; Chauhan, V. P.; Jung, K.; Martin, J. D. et al. Solid stress and elastic energy as measures of tumour mechanopathology. Nat. Biomed. Eng. 2017, 1, 0004.
Mpekris, F.; Voutouri, C.; Baish, J. W.; Duda, D. G.; Munn, L. L.; Stylianopoulos, T.; Jain, R. K. Combining microenvironment normalization strategies to improve cancer immunotherapy. Proc. Natl. Acad. Sci. USA 2020, 117, 3728–3737.
Visvader, J. E.; Lindeman, G. J. Cancer stem cells: Current status and evolving complexities. Cell Stem Cell 2012, 10, 717–728.
Hurtado, P.; Martínez-Pena, I.; Piñeiro, R. Dangerous liaisons: Circulating tumor cells (CTCs) and cancer-associated fibroblasts (CAFs). Cancers (Basel) 2020, 12, 2861.
Plaks, V.; Kong, N.; Werb, Z. The cancer stem cell niche: How essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 2015, 16, 225–238.
Khan, I. N.; Ullah, N.; Hussein, D.; Saini, K. S. Current and emerging biomarkers in tumors of the central nervous system: Possible diagnostic, prognostic and therapeutic applications. Semin. Cancer Biol. 2018, 52, 85–102.