AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Size and near-surface engineering in weak-oxidative confined space to fabricate 4 nm L10-PtCo@Pt nanoparticles for oxygen reduction reaction

Yifei Liao1,2,3Lishan Peng4,5Chaoling Wu2,3Yigang Yan1,3Haijiao Xie6Yungui Chen1,3( )Yao Wang1,3( )
Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, China
Department of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, China
School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou 310003, China
Show Author Information
An erratum to this article is available online at:

Graphical Abstract

4 nm L10-PtCo@concave-Pt nanoparticles (NPs) are synthesized in a weak-oxidative confined space. PtCo-1000/C shows good activity (1.290 A∙mgPt−1) and stability (85.2% of initial). Density functional theory (DFT) calculations suggest the cave Pt site optimizes the protonation of *O. The yield of PtCo-1000/C could be easily scaled up to gram level.

Abstract

The near-surface structure of the Pt-based alloy including the surface and subsurface structures is prominent to their electrocatalytic performance. Modulating the near-surface structure of PtCo intermetallics with small particle size could efficiently optimize the binding force between Pt and oxygen and finally enhance its oxygen reduction reaction (ORR) performance. Here we simultaneously achieve the size controlling and surface modulation of intermetallic nanoparticles (NPs) in a weak-oxidative confined space with abundant uncoordinated oxygen atoms. 1–2 atomic layers of concave Pt-rich surface were successfully constructed on 4 nm L10-PtCo core after removing Co–O species which is derived from the segregation of the subsurface Co to the surface induced by the uncoordinated oxygen atoms. Owing to the elaborate structure, PtCo-1000/C catalyst shows significant improvement in both activity (1.290 A∙mgPt−1 and 1.529 mA∙cmPt−2 at 0.9 V vs. reversible hydrogen electrode (RHE)) and stability (85.2% of initial mass activity after accelerated degression tests (ADTs)) even the production is scaled up to gram level. Density functional theory calculations suggest that the cave Pt site optimizes the protonation of *O, which finally boosts the ORR performance.

Electronic Supplementary Material

Download File(s)
12274_2022_5399_MOESM1_ESM.pdf (3.8 MB)
12274_2023_5399_MOESM2_ESM.pdf (4.5 MB)

References

[1]

Wang, X. X.; Swihart, M. T.; Wu, G. Achievements, challenges, and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nat. Catal. 2019, 2, 578–589.

[2]

Kodama, K.; Nagai, T.; Kuwaki, A.; Jinnouchi, R.; Morimoto, Y. Challenges in applying highly active Pt-based nanostructured catalysts for oxygen reduction reactions to fuel cell vehicles. Nat. Nanotechnol. 2021, 16, 140–147.

[3]

Stephens, I. E. L.; Rossmeisl, J.; Chorkendorff, I. Toward sustainable fuel cells. Science 2016, 354, 1378–1379.

[4]

Wang, Y. J.; Fang, B. Z.; Li, H.; Bi, X. T.; Wang, H. J. Progress in modified carbon support materials for Pt and Pt-alloy cathode catalysts in polymer electrolyte membrane fuel cells. Prog. Mater. Sci. 2016, 82, 445–498.

[5]

He, Y. H.; Liu, S. W.; Priest, C.; Shi, Q. R.; Wu, G. Atomically dispersed metal–nitrogen-carbon catalysts for fuel cells: Advances in catalyst design, electrode performance, and durability improvement. Chem. Soc. Rev. 2020, 49, 3484–3524.

[6]

Shao, Y. Y.; Sui, J.; Yin, G. P.; Gao, Y. Z. Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell. Appl. Catal. B: Environ. 2008, 79, 89–99.

[7]

Gao, Y.; Kong, D. B.; Liang, J. X.; Han, D. L.; Wang, B.; Yang, Q. H.; Zhi, L. J. Inside–out dual-doping effects on tubular catalysts: Structural and chemical variation for advanced oxygen reduction performance. Nano Res. 2022, 15, 361–367.

[8]

Ren, X. F.; Lv, Q. Y.; Liu, L. F.; Liu, B. H.; Wang, Y. R.; Liu, A. M.; Wu, G. Current progress of Pt and Pt-based electrocatalysts used for fuel cells. Sustainable Energy Fuels 2020, 4, 15–30.

[9]

Luo, M. C.; Guo, S. J. Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2017, 2, 17059.

[10]

Wang, X. X.; Sokolowski, J.; Liu, H.; Wu, G. Pt alloy oxygen-reduction electrocatalysts: Synthesis, structure, and property. Chin. J. Catal. 2020, 41, 739–755.

[11]

Liao, Y. F.; Wang, Y.; Zhang, R. X.; Wu, C. L.; Yan, Y. G.; Chen, Y. G. Anti-sintering Pt particles confined in short ordered mesoporous carbon with rapid mass transport for superior and robust oxygen reduction. ChemCatChem 2020, 12, 1958–1962.

[12]

Zhang, J. X.; Zhang, L. H.; Cui, Z. M. Strategies to enhance the electrochemical performances of Pt-based intermetallic catalysts. Chem. Commun. 2021, 57, 11–26.

[13]

Ma, Z.; Cano, Z. P.; Yu, A. P.; Chen, Z. W.; Jiang, G. P.; Fu, X. G.; Yang, L.; Wu, T. P.; Bai, Z. Y.; Lu, J. Enhancing oxygen reduction activity of Pt-based electrocatalysts: From theoretical mechanisms to practical methods. Angew. Chem., Int. Ed. 2020, 59, 18334–18348.

[14]

Liu, M. L.; Zhao, Z. P.; Duan, X. F.; Huang, Y. Nanoscale structure design for high-performance Pt-based ORR catalysts. Adv. Mater. 2019, 31, 1802234.

[15]

Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B: Environ. 2005, 56, 9–35.

[16]

Xu, Z.; Zhang, H. M.; Zhong, H. X.; Lu, Q. H.; Wang, Y. F.; Su, D. S. Effect of particle size on the activity and durability of the Pt/C electrocatalyst for proton exchange membrane fuel cells. Appl. Catal. B: Environ. 2012, 111–112, 264–270.

[17]

Banham, D.; Ye, S. Y. Current status and future development of catalyst materials and catalyst layers for proton exchange membrane fuel cells: An industrial perspective. ACS Energy Lett. 2017, 2, 629–638.

[18]

Gong, W. H.; Jiang, Z.; Wu, R. F.; Liu, Y.; Huang, L.; Hu, N.; Tsiakaras, P.; Shen, P. K. Cross-double dumbbell-like Pt-Ni nanostructures with enhanced catalytic performance toward the reactions of oxygen reduction and methanol oxidation. Appl. Catal. B: Environ. 2019, 246, 277–283.

[19]

Yu, Y. N.; Xia, F. J.; Wang, C. J.; Wu, J. S.; Fu, X. B.; Ma, D. S.; Lin, B. C.; Wang, J. A.; Yue, Q.; Kang, Y. J. High-entropy alloy nanoparticles as a promising electrocatalyst to enhance activity and durability for oxygen reduction. Nano Res. 2022, 15, 7868–7876.

[20]

Bu, L. Z.; Guo, S. J.; Zhang, X.; Shen, X.; Su, D.; Lu, G.; Zhu, X.; Yao, J. L.; Guo, J.; Huang, X. Q. Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis. Nat. Commun. 2016, 7, 11850.

[21]

Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Markovic, N. M. Improved oxygen reduction activity on Pt3Ni (111) via increased surface site availability. Science 2007, 315, 493–497.

[22]

Kühl, S.; Gocyla, M.; Heyen, H.; Selve, S.; Heggen, M.; Dunin-Borkowski, R. E.; Strasser, P. Concave curvature facets benefit oxygen electroreduction catalysis on octahedral shaped PtNi nanocatalysts. J. Mater. Chem. A 2019, 7, 1149–1159.

[23]

Chattot, R.; Le Bacq, O.; Beermann, V.; Kühl, S.; Herranz, J.; Henning, S.; Kühn, L.; Asset, T.; Guétaz, L.; Renou, G. et al. Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis. Nat. Mater. 2018, 17, 827–833.

[24]

Kong, F. P.; Ren, Z. H.; Banis, M. N.; Du, L.; Zhou, X.; Chen, G. Y.; Zhang, L.; Li, J. J.; Wang, S. Z.; Li, M. S. et al. Active and stable Pt-Ni alloy octahedra catalyst for oxygen reduction via near-surface atomical engineering. ACS Catal. 2020, 10, 4205–4214.

[25]

Cui, C. H.; Gan, L.; Heggen, M.; Rudi, S.; Strasser, P. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 2013, 12, 765–771.

[26]

Cao, L.; Zhao, Z. P.; Liu, Z. Y.; Gao, W. P.; Dai, S.; Gha, J.; Xue, W.; Sun, H. T.; Duan, X. F.; Pan, X. Q. et al. Differential surface elemental distribution leads to significantly enhanced stability of PtNi-based ORR catalysts. Matter 2019, 1, 1567–1580.

[27]

Liao, Y. F.; Wang, Y.; Liu, J. C.; Tang, Y. Y.; Wu, C. L.; Chen, Y. G. Ordered mesoporous carbon confined highly dispersed PtCo alloy for the oxygen reduction reaction: The effect of structure and composition on performance. Ind. Eng. Chem. Res. 2021, 60, 14728–14736.

[28]

Wang, D. L.; Xin, H. L.; Hovden, R.; Wang, H. S.; Yu, Y. C.; Muller, D. A.; Disalvo, F. J.; Abruña, H. D. Structurally ordered intermetallic platinum-cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 2013, 12, 81–87.

[29]

Zhao, T.; Luo, E. G.; Li, Y.; Wang, X.; Liu, C. P.; Xing, W.; Ge, J. J. Highly dispersed L10-PtZn intermetallic catalyst for efficient oxygen reduction. Sci. China Mater. 2021, 64, 1671–1678.

[30]

Li, J. R.; Sharma, S.; Liu, X. M.; Pan, Y. T.; Spendelow, J. S.; Chi, M. F.; Jia, Y. K.; Zhang, P.; Cullen, D. A.; Xi, Z. et al. Hard-magnet L10-CoPt nanoparticles advance fuel cell catalysis. Joule 2019, 3, 124–135.

[31]

Li, Q.; Wu, L. H.; Wu, G.; Su, D.; Lv, H. F.; Zhang, S.; Zhu, W. L.; Casimir, A.; Zhu, H. Y.; Mendoza-Garcia, A. et al. New approach to fully ordered fct-FePt nanoparticles for much enhanced electrocatalysis in acid. Nano Lett. 2015, 15, 2468–2473.

[32]

Zhao, Y. G.; Wang, C.; Liu, J. J.; Wang, F. PDA-assisted formation of ordered intermetallic CoPt3 catalysts with enhanced oxygen reduction activity and stability. Nanoscale 2018, 10, 9038–9043.

[33]

Gao, P.; Pu, M.; Chen, Q. J.; Zhu, H. Pt-based intermetallic nanocrystals in cathode catalysts for proton exchange membrane fuel cells: From precise synthesis to oxygen reduction reaction strategy. Catalysts 2021, 11, 1050.

[34]

Li, W.; Wang, D. D.; Liu, T. Y.; Tao, L.; Zhang, Y. G.; Huang, Y. C.; Du, S. Q.; Dong, C. L.; Kong, Z. J.; Li, Y. F. et al. Doping-modulated strain enhancing the phosphate tolerance on PtFe alloys for high-temperature proton exchange membrane fuel cells. Adv. Funct. Mater. 2022, 32, 2109244.

[35]

Yao, X. Z.; Wei, Y. P.; Wang, Z. X.; Gan, L. Revealing the role of surface composition on the particle mobility and coalescence of carbon-supported Pt alloy fuel cell catalysts by in situ heating (S)TEM. ACS Catal. 2020, 10, 7381–7388.

[36]

Li, F.; Zong, Y.; Ma, Y. L.; Wang, M. X.; Shang, W.; Tao, P.; Song, C. Y.; Deng, T.; Zhu, H.; Wu, J. B. Atomistic imaging of competition between surface diffusion and phase transition during the intermetallic formation of faceted particles. ACS Nano 2021, 15, 5284–5293.

[37]

Li, L.; Wang, S.; Xiong, L. F.; Wang, B.; Yang, G.; Yang, S. C. Surface-engineered mesoporous Pt nanodendrites with Ni dopant for highly enhanced catalytic performance in hydrogen evolution reaction. J. Mater. Chem. A 2019, 7, 12800–12807.

[38]

Shan, A. X.; Huang, S. Y.; Zhao, H. F.; Jiang, W. G.; Teng, X. A.; Huang, Y. C.; Chen, C. P.; Wang, R. M.; Lau, W. M. Atomic-scaled surface engineering Ni-Pt nanoalloys towards enhanced catalytic efficiency for methanol oxidation reaction. Nano Res. 2020, 13, 3088–3097.

[39]

Calle-Vallejo, F.; Pohl, M. D.; Reinisch, D.; Loffreda, D.; Sautet, P.; Bandarenka, A. S. Why conclusions from platinum model surfaces do not necessarily lead to enhanced nanoparticle catalysts for the oxygen reduction reaction. Chem. Sci. 2017, 8, 2283–2289.

[40]

Kim, J.; Hong, Y. J.; Lee, K.; Kim, J. Y. Highly stable Pt-based ternary systems for oxygen reduction reaction in acidic electrolytes. Adv. Energy Mater. 2020, 10, 2002049.

[41]

Menning, C. A.; Hwu, H. H.; Chen, J. G. Experimental and theoretical investigation of the stability of Pt-3d-Pt (111) bimetallic surfaces under oxygen environment. J. Phys. Chem. B 2006, 110, 15471–15477.

[42]

Kim, T. S.; Kim, J.; Song, H. C.; Kim, D.; Jeong, B.; Lee, J.; Shin, J. W.; Ryoo, R.; Park, J. Y. Catalytic synergy on PtNi bimetal catalysts driven by interfacial intermediate structures. ACS Catal. 2020, 10, 10459–10467.

[43]

Rudi, S.; Teschner, D.; Beermann, V.; Hetaba, W.; Gan, L.; Cui, C. H.; Gliech, M.; Schlögl, R.; Strasser, P. pH-induced versus oxygen-induced surface enrichment and segregation effects in Pt-Ni alloy nanoparticle fuel cell catalysts. ACS Catal. 2017, 7, 6376–6384.

[44]

Wang, D. L.; Yu, Y. C.; Xin, H. L.; Hovden, R.; Ercius, P.; Mundy, J. A.; Chen, H.; Richard, J. H.; Muller, D. A.; Disalvo, F. J. et al. Tuning oxygen reduction reaction activity via controllable dealloying: A model study of ordered Cu3Pt/C intermetallic nanocatalysts. Nano Lett. 2012, 12, 5230–5238.

[45]

Wang, D. L.; Yu, Y. C.; Zhu, J.; Liu, S. F.; Muller, D. A.; Abruña, H. D. Morphology and activity tuning of Cu3Pt/C ordered intermetallic nanoparticles by selective electrochemical dealloying. Nano Lett. 2015, 15, 1343–1348.

[46]

Li, W.; Zhao, L.; Jiang, X. L.; Chen, Z. K.; Zhang, Y. G.; Wang, S. Y. Confinement engineering of electrocatalyst surfaces and interfaces. Adv. Funct. Mater. 2022, 32, 2207727.

[47]

Kim, J.; Lee, Y.; Sun, S. H. Structurally ordered FePt nanoparticles and their enhanced catalysis for oxygen reduction reaction. J. Am. Chem. Soc. 2010, 132, 4996–4997.

[48]

Lee, J. S.; Joo, S. H.; Ryoo, R. Synthesis of mesoporous silicas of controlled pore wall thickness and their replication to ordered nanoporous carbons with various pore diameters. J. Am. Chem. Soc. 2002, 124, 1156–1157.

[49]

Chen, S. Y.; Tang, C. Y.; Chuang, W. T.; Lee, J. J.; Tsai, Y. L.; Chan, J. C. C.; Lin, C. Y.; Liu, Y. C.; Cheng, S. A facile route to synthesizing functionalized mesoporous SBA-15 materials with platelet morphology and short mesochannels. Chem. Mater. 2008, 20, 3906–3916.

[50]

Ehelebe, K.; Seeberger, D.; Paul, M. T. Y.; Thiele, S.; Mayrhofer, K. J. J.; Cherevko, S. Evaluating electrocatalysts at relevant currents in a half-cell: The impact of Pt loading on oxygen reduction reaction. J. Electrochem. Soc. 2019, 166, F1259–F1268.

[51]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[52]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[53]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[54]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[55]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[56]

Peuckert, M.; Coenen, F. P.; Bonzel, H. P. XPS study of the electrochemical surface oxidation of Platinum in N H2SO4 acid electrolyte. Electrochim. Acta 1984, 29, 1305–1314.

[57]

Tyuliev, G.; Angelov, S. The nature of excess oxygen in Co3O4+ϵ. Appl. Surf. Sci. 1988, 32, 381–391.

[58]

Choi, D. S.; Robertson, A. W.; Warner, J. H.; Kim, S. O.; Kim, H. Low-temperature chemical vapor deposition synthesis of Pt-Co alloyed nanoparticles with enhanced oxygen reduction reaction catalysis. Adv. Mater. 2016, 28, 7115–7122.

Nano Research
Pages 6622-6631
Cite this article:
Liao Y, Peng L, Wu C, et al. Size and near-surface engineering in weak-oxidative confined space to fabricate 4 nm L10-PtCo@Pt nanoparticles for oxygen reduction reaction. Nano Research, 2023, 16(5): 6622-6631. https://doi.org/10.1007/s12274-023-5399-2
Topics:

12781

Views

10

Crossref

14

Web of Science

13

Scopus

1

CSCD

Altmetrics

Received: 16 August 2022
Revised: 24 November 2022
Accepted: 10 December 2022
Published: 12 January 2023
© Tsinghua University Press 2023
Return