AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Large-scale synthesis of low-cost 2D metal–organic frameworks for highly selective photocatalytic CO2 reduction

Ning-Yu Huang1,2,3,4Zhen-Yu Chen1,2,3,4Fei-Long Hu1,2,3,4Chun-Yan Shang1,2,3,4Wenjuan Wang1,2,3,4Jia-Run Huang6Chuan Zhou1,3Lei Li1,3Qiang Xu1,2,3,4,5( )
Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Southern University of Science and Technology, Shenzhen 518055, China
Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Southern University of Science and Technology, Shenzhen 518055, China
Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
Show Author Information

Graphical Abstract

Two two-dimensional metal-organic frameworks (2D MOFs), constructed by low-cost ligand succinic acid via hydrothermal reaction or even stirring under room temperature, can be easily exfoliated to ultrathin nanosheets (ca. 3.6 nm). With the help of unsaturated metal sites, these MOF catalysts show excellent activity and product selectivity for photocatalytic CO2 reduction.

Abstract

Two-dimensional metal–organic frameworks (2D MOFs), as a new type of 2D materials, have been widely applied in various applications because of their unique structures and exposed active sites. Herein, we reported two low-cost 2D MOFs constructed by a raw chemical succinic acid (SA), M-SA (M = Ni or Co), which served as efficient photocatalysts for the reduction of CO2 to CO. Taking advantage of the thinness and open metal sites, the ultrathin Ni-SA nanosheets (ca. 3.6 nm) exhibited excellent CO production of 6.96(7) mmol·g−1·h−1 and CO selectivity of 96.6%. Photoelectrochemical tests and theoretical calculations further confirmed the higher charge transfer efficiency and unsaturated metal sites for promoting photocatalytic performances. More importantly, Ni-SA can also be synthesized in large-scale by an energy-saving method under room temperature, strongly suggesting its promising future and potential for practical applications.

Electronic Supplementary Material

Download File(s)
12274_2023_5405_MOESM1_ESM.pdf (3.1 MB)

References

[1]

Huang, Z.; Grim, R. G.; Schaidle, J. A.; Tao, L. The economic outlook for converting CO2 and electrons to molecules. Energy Environ. Sci. 2021, 14, 3664–3678.

[2]

Jiao, X. C.; Zheng, K.; Liang, L.; Li, X. D.; Sun, Y. F.; Xie, Y. Fundamentals and challenges of ultrathin 2D photocatalysts in boosting CO2 photoreduction. Chem. Soc. Rev. 2020, 49, 6592–6604.

[3]

Liang, J.; Wu, Q.; Huang, Y. B.; Cao, R. Reticular frameworks and their derived materials for CO2 conversion by thermo-catalysis. EnergyChem 2021, 3, 100064.

[4]

Navarro-Jaén, S.; Virginie, M.; Bonin, J.; Robert, M.; Wojcieszak, R.; Khodakov, A. Y. Highlights and challenges in the selective reduction of carbon dioxide to methanol. Nat. Rev. Chem. 2021, 5, 564–579.

[5]

Chang, X. X.; Wang, T.; Gong, J. L. CO2 photo-reduction: Insights into CO2 activation and reaction on surfaces of photocatalysts. Energy. Environ. Sci. 2016, 9, 2177–2196.

[6]

Sun, X. H.; Sun, L.; Li, G. N.; Tuo, Y. X.; Ye, C. L.; Yang, J. R.; Low, J.; Yu, X.; Bitter, J. H.; Lei, Y. P. et al. Phosphorus tailors the d-band center of copper atomic sites for efficient CO2 photoreduction under visible-light irradiation. Angew. Chem., Int. Ed. 2022, 61, e202207677.

[7]

Zhang, R. Z.; Wu, B. Y.; Li, Q.; Lu, L. L.; Shi, W.; Cheng, P. Design strategies and mechanism studies of CO2 electroreduction catalysts based on coordination chemistry. Coord. Chem. Rev. 2020, 422, 213436.

[8]

Wang, Y.; Huang, N. Y.; Shen, J. Q.; Liao, P. Q.; Chen, X. M.; Zhang, J. P. Hydroxide ligands cooperate with catalytic centers in metal–organic frameworks for efficient photocatalytic CO2 reduction. J. Am. Chem. Soc. 2018, 140, 38–41.

[9]

Boutin, E.; Merakeb, L.; Ma, B.; Boudy, B.; Wang, M.; Bonin, J.; Anxolabéhère-Mallart, E.; Robert, M. Molecular catalysis of CO2 reduction: Recent advances and perspectives in electrochemical and light-driven processes with selected Fe, Ni and Co aza macrocyclic and polypyridine complexes. Chem. Soc. Rev. 2020, 49, 5772–5809.

[10]

Zhang, B. B.; Sun, L. C. Artificial photosynthesis: Opportunities and challenges of molecular catalysts. Chem. Soc. Rev. 2019, 48, 2216–2264.

[11]

Wang, Y. O.; Chen, E. Q.; Tang, J. W. Insight on reaction pathways of photocatalytic CO2 conversion. ACS Catal. 2022, 12, 7300–7316.

[12]

Kreft, S.; Wei, D.; Junge, H.; Beller, M. Recent advances on TiO2-based photocatalytic CO2 reduction. EnergyChem 2020, 2, 100044.

[13]

Xiong, X. Y.; Zhao, Y. F.; Shi, R.; Yin, W. J.; Zhao, Y. X.; Waterhouse, G. I. N.; Zhang, T. R. Selective photocatalytic CO2 reduction over Zn-based layered double hydroxides containing tri or tetravalent metals. Sci. Bull. 2020, 65, 987–994.

[14]

Wang, Y.; Zhang, Z. Z.; Zhang, L. N.; Luo, Z. B.; Shen, J. N.; Lin, H. X.; Long, J. L.; Wu, J. C. S.; Fu, X. Z.; Wang, X. X. Visible-light driven overall conversion of CO2 and H2O to CH4 and O2 on 3D-SiC@2D-MoS2 heterostructure. J. Am. Chem. Soc. 2018, 140, 14595–14598.

[15]

Wang, G.; Chen, Z.; Wang, T.; Wang, D. S.; Mao, J. J. P and Cu dual sites on graphitic carbon nitride for photocatalytic CO2 reduction to hydrocarbon fuels with high C2H6 evolution. Angew. Chem., Int. Ed. 2022, 61, e202210789.

[16]

Ou, H. H.; Ning, S. B.; Zhu, P.; Chen, S. H.; Han, A. L.; Kang, Q.; Hu, Z. F.; Ye, J. H.; Wang, D. S.; Li, Y. D. Carbon nitride photocatalysts with integrated oxidation and reduction atomic active centers for improved CO2 conversion. Angew. Chem., Int. Ed. 2022, 61, e202206579.

[17]

Huang, G. C.; Niu, Q.; He, Y. X.; Tian, J. J.; Gao, M. B.; Li, C. Y.; An, N.; Bi, J. H.; Zhang, J. W. Spatial confinement of copper single atoms into covalent triazine-based frameworks for highly efficient and selective photocatalytic CO2 reduction. Nano Res. 2022, 15, 8001–8009.

[18]

Luo, Y. H.; Dong, L. Z.; Liu, J.; Li, S. L.; Lan, Y. Q. From molecular metal complex to metal–organic framework: The CO2 reduction photocatalysts with clear and tunable structure. Coord. Chem. Rev. 2019, 390, 86–126.

[19]

Li, D. D.; Kassymova, M.; Cai, X. C.; Zang, S. Q.; Jiang, H. L. Photocatalytic CO2 reduction over metal–organic framework-based materials. Coord. Chem. Rev. 2020, 412, 213262.

[20]

Li, D. D.; Xu, H. Q.; Jiao, L.; Jiang, H. L. Metal–organic frameworks for catalysis: State of the art, challenges, and opportunities. EnergyChem 2019, 1, 100005.

[21]

Rao, H.; Schmidt, L. C.; Bonin, J.; Robert, M. Visible-light-driven methane formation from CO2 with a molecular iron catalyst. Nature 2017, 548, 74–77.

[22]

Jiang, Z.; Xu, X. H.; Ma, Y. H.; Cho, H. S.; Ding, D.; Wang, C.; Wu, J.; Oleynikov, P.; Jia, M.; Cheng, J. et al. Filling metal–organic framework mesopores with TiO2 for CO2 photoreduction. Nature 2020, 586, 549–554.

[23]

Trickett, C. A.; Helal, A.; Al-Maythalony, B. A.; Yamani, Z. H.; Cordova, K. E.; Yaghi, O. M. The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion. Nat. Rev. Mater. 2017, 2, 17045.

[24]

Huang, N. Y.; Zhang, X. W.; Xu, Y. Z.; Liao, P. Q.; Chen, X. M. A local hydrophobic environment in a metal–organic framework for boosting photocatalytic CO2 reduction in the presence of water. Chem. Commun. 2019, 55, 14781–14784.

[25]

Kajiwara, T.; Fujii, M.; Tsujimoto, M.; Kobayashi, K.; Higuchi, M.; Tanaka, K.; Kitagawa, S. Photochemical reduction of low concentrations of CO2 in a porous coordination polymer with a ruthenium(II)-CO complex. Angew. Chem., Int. Ed. 2016, 55, 2697–2700.

[26]

Cheng, X. M.; Dao, X. Y.; Wang, S. Q.; Zhao, J.; Sun, W. Y. Enhanced photocatalytic CO2 reduction activity over NH2-MIL-125(Ti) by facet regulation. ACS Catal. 2021, 11, 650–658.

[27]

Zhang, H. B.; Wei, J.; Dong, J. C.; Liu, G. G.; Shi, L.; An, P. F.; Zhao, G. X.; Kong, J. T.; Wang, X. J.; Meng, X. G. et al. Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal–organic framework. Angew. Chem., Int. Ed. 2016, 55, 14310–14314.

[28]

Liu, J. J.; Song, X. Y.; Zhang, T.; Liu, S. Y.; Wen, H. R.; Chen, L. 2D conductive metal–organic frameworks: An emerging platform for electrochemical energy storage. Angew. Chem., Int. Ed. 2021, 60, 5612–5624.

[29]

Lin, Y.; Li, W. H.; Wen, Y. Y.; Wang, G. E.; Ye, X. L.; Xu, G. Layer-by-layer growth of preferred-oriented MOF thin film on nanowire array for high-performance chemiresistive sensing. Angew. Chem., Int. Ed. 2021, 60, 25758–25761.

[30]

Li, Q.; Lu, L. L.; Liu, J. W.; Shi, W.; Cheng, P. Two-dimensional bimetallic coordination polymers as bifunctional evolved electrocatalysts for enhanced oxygen evolution reaction and urea oxidation reaction. J. Energy Chem. 2021, 63, 230–238.

[31]

Xia, Y. S.; Tang, M. Z.; Zhang, L.; Liu, J.; Jiang, C.; Gao, G. K.; Dong, L. Z.; Xie, L. G.; Lan, Y. Q. Tandem utilization of CO2 photoreduction products for the carbonylation of aryl iodides. Nat. Commun. 2022, 13, 2964.

[32]

Yang, W.; Wang, H. J.; Liu, R. R.; Wang, J. W.; Zhang, C.; Li, C.; Zhong, D. C.; Lu, T. B. Tailoring crystal facets of metal–organic layers to enhance photocatalytic activity for CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 409–414.

[33]

Wang, J. W.; Qiao, L. Z.; Nie, H. D.; Huang, H. H.; Li, Y.; Yao, S.; Liu, M.; Zhang, Z. M.; Kang, Z. H.; Lu, T. B. Facile electron delivery from graphene template to ultrathin metal–organic layers for boosting CO2 photoreduction. Nat. Commun. 2021, 12, 813.

[34]

Han, B.; Ou, X. W.; Deng, Z. Q.; Song, Y.; Tian, C.; Deng, H.; Xu, Y. J.; Lin, Z. Nickel metal–organic framework monolayers for photoreduction of diluted CO2: Metal-node-dependent activity and selectivity. Angew. Chem., Int. Ed. 2018, 57, 16811–16815.

[35]

Yi, J. D.; Xie, R. K.; Xie, Z. L.; Chai, G. L.; Liu, T. F.; Chen, R. P.; Huang, Y. B.; Cao, R. Highly selective CO2 electroreduction to CH4 by in situ generated Cu2O single-type sites on a conductive MOF: Stabilizing key intermediates with hydrogen bonding. Angew. Chem., Int. Ed. 2020, 59, 23641–23648.

[36]

Miner, E. M.; Fukushima, T.; Sheberla, D.; Sun, L.; Surendranath, Y.; Dincă, M. Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2. Nat. Commun. 2016, 7, 10942.

[37]

Sheberla, D.; Bachman, J. C.; Elias, J. S.; Sun, C. J.; Shao-Horn, Y.; Dincă, M. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 2017, 16, 220–224.

[38]

Shinde, S. S.; Lee, C. H.; Jung, J. Y.; Wagh, N. K.; Kim, S. H.; Kim, D. H.; Lin, C.; Lee, S. U.; Lee, J. H. Unveiling dual-linkage 3D hexaiminobenzene metal–organic frameworks towards long-lasting advanced reversible Zn–air batteries. Energy Environ. Sci. 2019, 12, 727–738.

[39]

Hmadeh, M.; Lu, Z.; Liu, Z.; Gándara, F.; Furukawa, H.; Wan, S.; Augustyn, V.; Chang, R.; Liao, L.; Zhou, F. et al. New porous crystals of extended metal-catecholates. Chem. Mater. 2012, 24, 3511–3513.

[40]

Yao, M. S.; Zheng, J. J.; Wu, A. Q.; Xu, G.; Nagarkar, S. S.; Zhang, G.; Tsujimoto, M.; Sakaki, S.; Horike, S.; Otake, K. et al. A dual-ligand porous coordination polymer chemiresistor with modulated conductivity and porosity. Angew. Chem., Int. Ed. 2020, 59, 172–176.

[41]

Huang, N. Y.; He, H.; Liu, S. J.; Zhu, H. L.; Li, Y. J.; Xu, J.; Huang, J. R.; Wang, X.; Liao, P. Q.; Chen, X. M. Electrostatic attraction-driven assembly of a metal–organic framework with a photosensitizer boosts photocatalytic CO2 reduction to CO. J. Am. Chem. Soc. 2021, 143, 17424–17430.

[42]

Lan, G. X.; Li, Z.; Veroneau, S. S.; Zhu, Y. Y.; Xu, Z. W.; Wang, C.; Lin, W. B. Photosensitizing metal–organic layers for efficient sunlight-driven carbon dioxide reduction. J. Am. Chem. Soc. 2018, 140, 12369–12373.

[43]

Zuo, Q.; Liu, T. T.; Chen, C. S.; Ji, Y.; Gong, X. Q.; Mai, Y. Y.; Zhou, Y. F. Ultrathin metal–organic framework nanosheets with ultrahigh loading of single Pt atoms for efficient visible-light-driven photocatalytic H2 evolution. Angew. Chem., Int. Ed. 2019, 58, 10198–10203.

[44]

Meng, Z.; Mirica, K. A. Two-dimensional d-π conjugated metal–organic framework based on hexahydroxytrinaphthylene. Nano Res. 2021, 14, 369–375.

[45]

Chakraborty, G.; Park, I. H.; Medishetty, R.; Vittal, J. J. Two-dimensional metal–organic framework materials: Synthesis, structures, properties and applications. Chem. Rev. 2021, 121, 3751–3891.

[46]

Wang, M. C.; Dong, R. H.; Feng, X. L. Two-dimensional conjugated metal–organic frameworks (2D c-MOFs): Chemistry and function for MOFtronics. Chem. Soc. Rev. 2021, 50, 2764–2793.

[47]

Lahiri, N.; Lotfizadeh, N.; Tsuchikawa, R.; Deshpande, V. V.; Louie, J. Hexaaminobenzene as a building block for a family of 2D coordination polymers. J. Am. Chem. Soc. 2017, 139, 19–22.

[48]

Guillou, N.; Livage, C.; van Beek, W.; Noguès, M.; Férey, G. A layered nickel succinate with unprecedented hexanickel units: Structure elucidation from powder-diffraction data, and magnetic and sorption properties. Angew. Chem., Int. Ed. 2003, 42, 643–647.

[49]

Jiang, Y.; Oh, I.; Joo, S. H.; Seo, Y. S.; Lee, S. H.; Seong, W. K.; Kim, Y. J.; Hwang, J.; Kwak, S. K.; Yoo, J. W. et al. Synthesis of a copper 1,3,5-triamino-2,4,6-benzenetriol metal–organic framework. J. Am. Chem. Soc. 2020, 142, 18346–18354.

[50]

Banda, H.; Dou, J. H.; Chen, T. Y.; Libretto, N. J.; Chaudhary, M.; Bernard, G. M.; Miller, J. T.; Michaelis, V. K.; Dincă, M. High-capacitance pseudocapacitors from Li+ ion intercalation in nonporous, electrically conductive 2D coordination polymers. J. Am. Chem. Soc. 2021, 143, 2285–2292.

[51]

Forster, P. M.; Burbank, A. R.; O'Sullivan, M. C.; Guillou, N.; Livage, C.; Férey, G.; Stock, N.; Cheetham, A. K. Single-crystal characterization of Co7(OH)6(H2O)3(C4H4O4)4·7H2O; a new cobalt succinate identified through high-throughput synthesis. Solid State Sci. 2005, 7, 1549–1555.

[52]

Li, X. G.; Bi, W. T.; Chen, M. L.; Sun, Y. X.; Ju, H. X.; Yan, W. S.; Zhu, J. F.; Wu, X. J.; Chu, W. S.; Wu, C. Z. et al. Exclusive Ni-N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. J. Am. Chem. Soc. 2017, 139, 14889–14892.

[53]

Kim, D.; Xie, C. L.; Becknell, N.; Yu, Y.; Karamad, M.; Chan, K. R.; Crumlin, E. J.; Nørskov, J. K.; Yang, P. D. Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J. Am. Chem. Soc. 2017, 139, 8329–8336.

Nano Research
Pages 7756-7760
Cite this article:
Huang N-Y, Chen Z-Y, Hu F-L, et al. Large-scale synthesis of low-cost 2D metal–organic frameworks for highly selective photocatalytic CO2 reduction. Nano Research, 2023, 16(5): 7756-7760. https://doi.org/10.1007/s12274-023-5405-8
Topics:
Part of a topical collection:

11093

Views

16

Crossref

2

Web of Science

15

Scopus

0

CSCD

Altmetrics

Received: 07 November 2022
Revised: 07 December 2022
Accepted: 08 December 2022
Published: 04 February 2023
© Tsinghua University Press 2023
Return