Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Two-dimensional metal–organic frameworks (2D MOFs), as a new type of 2D materials, have been widely applied in various applications because of their unique structures and exposed active sites. Herein, we reported two low-cost 2D MOFs constructed by a raw chemical succinic acid (SA), M-SA (M = Ni or Co), which served as efficient photocatalysts for the reduction of CO2 to CO. Taking advantage of the thinness and open metal sites, the ultrathin Ni-SA nanosheets (ca. 3.6 nm) exhibited excellent CO production of 6.96(7) mmol·g−1·h−1 and CO selectivity of 96.6%. Photoelectrochemical tests and theoretical calculations further confirmed the higher charge transfer efficiency and unsaturated metal sites for promoting photocatalytic performances. More importantly, Ni-SA can also be synthesized in large-scale by an energy-saving method under room temperature, strongly suggesting its promising future and potential for practical applications.
Huang, Z.; Grim, R. G.; Schaidle, J. A.; Tao, L. The economic outlook for converting CO2 and electrons to molecules. Energy Environ. Sci. 2021, 14, 3664–3678.
Jiao, X. C.; Zheng, K.; Liang, L.; Li, X. D.; Sun, Y. F.; Xie, Y. Fundamentals and challenges of ultrathin 2D photocatalysts in boosting CO2 photoreduction. Chem. Soc. Rev. 2020, 49, 6592–6604.
Liang, J.; Wu, Q.; Huang, Y. B.; Cao, R. Reticular frameworks and their derived materials for CO2 conversion by thermo-catalysis. EnergyChem 2021, 3, 100064.
Navarro-Jaén, S.; Virginie, M.; Bonin, J.; Robert, M.; Wojcieszak, R.; Khodakov, A. Y. Highlights and challenges in the selective reduction of carbon dioxide to methanol. Nat. Rev. Chem. 2021, 5, 564–579.
Chang, X. X.; Wang, T.; Gong, J. L. CO2 photo-reduction: Insights into CO2 activation and reaction on surfaces of photocatalysts. Energy. Environ. Sci. 2016, 9, 2177–2196.
Sun, X. H.; Sun, L.; Li, G. N.; Tuo, Y. X.; Ye, C. L.; Yang, J. R.; Low, J.; Yu, X.; Bitter, J. H.; Lei, Y. P. et al. Phosphorus tailors the d-band center of copper atomic sites for efficient CO2 photoreduction under visible-light irradiation. Angew. Chem., Int. Ed. 2022, 61, e202207677.
Zhang, R. Z.; Wu, B. Y.; Li, Q.; Lu, L. L.; Shi, W.; Cheng, P. Design strategies and mechanism studies of CO2 electroreduction catalysts based on coordination chemistry. Coord. Chem. Rev. 2020, 422, 213436.
Wang, Y.; Huang, N. Y.; Shen, J. Q.; Liao, P. Q.; Chen, X. M.; Zhang, J. P. Hydroxide ligands cooperate with catalytic centers in metal–organic frameworks for efficient photocatalytic CO2 reduction. J. Am. Chem. Soc. 2018, 140, 38–41.
Boutin, E.; Merakeb, L.; Ma, B.; Boudy, B.; Wang, M.; Bonin, J.; Anxolabéhère-Mallart, E.; Robert, M. Molecular catalysis of CO2 reduction: Recent advances and perspectives in electrochemical and light-driven processes with selected Fe, Ni and Co aza macrocyclic and polypyridine complexes. Chem. Soc. Rev. 2020, 49, 5772–5809.
Zhang, B. B.; Sun, L. C. Artificial photosynthesis: Opportunities and challenges of molecular catalysts. Chem. Soc. Rev. 2019, 48, 2216–2264.
Wang, Y. O.; Chen, E. Q.; Tang, J. W. Insight on reaction pathways of photocatalytic CO2 conversion. ACS Catal. 2022, 12, 7300–7316.
Kreft, S.; Wei, D.; Junge, H.; Beller, M. Recent advances on TiO2-based photocatalytic CO2 reduction. EnergyChem 2020, 2, 100044.
Xiong, X. Y.; Zhao, Y. F.; Shi, R.; Yin, W. J.; Zhao, Y. X.; Waterhouse, G. I. N.; Zhang, T. R. Selective photocatalytic CO2 reduction over Zn-based layered double hydroxides containing tri or tetravalent metals. Sci. Bull. 2020, 65, 987–994.
Wang, Y.; Zhang, Z. Z.; Zhang, L. N.; Luo, Z. B.; Shen, J. N.; Lin, H. X.; Long, J. L.; Wu, J. C. S.; Fu, X. Z.; Wang, X. X. Visible-light driven overall conversion of CO2 and H2O to CH4 and O2 on 3D-SiC@2D-MoS2 heterostructure. J. Am. Chem. Soc. 2018, 140, 14595–14598.
Wang, G.; Chen, Z.; Wang, T.; Wang, D. S.; Mao, J. J. P and Cu dual sites on graphitic carbon nitride for photocatalytic CO2 reduction to hydrocarbon fuels with high C2H6 evolution. Angew. Chem., Int. Ed. 2022, 61, e202210789.
Ou, H. H.; Ning, S. B.; Zhu, P.; Chen, S. H.; Han, A. L.; Kang, Q.; Hu, Z. F.; Ye, J. H.; Wang, D. S.; Li, Y. D. Carbon nitride photocatalysts with integrated oxidation and reduction atomic active centers for improved CO2 conversion. Angew. Chem., Int. Ed. 2022, 61, e202206579.
Huang, G. C.; Niu, Q.; He, Y. X.; Tian, J. J.; Gao, M. B.; Li, C. Y.; An, N.; Bi, J. H.; Zhang, J. W. Spatial confinement of copper single atoms into covalent triazine-based frameworks for highly efficient and selective photocatalytic CO2 reduction. Nano Res. 2022, 15, 8001–8009.
Luo, Y. H.; Dong, L. Z.; Liu, J.; Li, S. L.; Lan, Y. Q. From molecular metal complex to metal–organic framework: The CO2 reduction photocatalysts with clear and tunable structure. Coord. Chem. Rev. 2019, 390, 86–126.
Li, D. D.; Kassymova, M.; Cai, X. C.; Zang, S. Q.; Jiang, H. L. Photocatalytic CO2 reduction over metal–organic framework-based materials. Coord. Chem. Rev. 2020, 412, 213262.
Li, D. D.; Xu, H. Q.; Jiao, L.; Jiang, H. L. Metal–organic frameworks for catalysis: State of the art, challenges, and opportunities. EnergyChem 2019, 1, 100005.
Rao, H.; Schmidt, L. C.; Bonin, J.; Robert, M. Visible-light-driven methane formation from CO2 with a molecular iron catalyst. Nature 2017, 548, 74–77.
Jiang, Z.; Xu, X. H.; Ma, Y. H.; Cho, H. S.; Ding, D.; Wang, C.; Wu, J.; Oleynikov, P.; Jia, M.; Cheng, J. et al. Filling metal–organic framework mesopores with TiO2 for CO2 photoreduction. Nature 2020, 586, 549–554.
Trickett, C. A.; Helal, A.; Al-Maythalony, B. A.; Yamani, Z. H.; Cordova, K. E.; Yaghi, O. M. The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion. Nat. Rev. Mater. 2017, 2, 17045.
Huang, N. Y.; Zhang, X. W.; Xu, Y. Z.; Liao, P. Q.; Chen, X. M. A local hydrophobic environment in a metal–organic framework for boosting photocatalytic CO2 reduction in the presence of water. Chem. Commun. 2019, 55, 14781–14784.
Kajiwara, T.; Fujii, M.; Tsujimoto, M.; Kobayashi, K.; Higuchi, M.; Tanaka, K.; Kitagawa, S. Photochemical reduction of low concentrations of CO2 in a porous coordination polymer with a ruthenium(II)-CO complex. Angew. Chem., Int. Ed. 2016, 55, 2697–2700.
Cheng, X. M.; Dao, X. Y.; Wang, S. Q.; Zhao, J.; Sun, W. Y. Enhanced photocatalytic CO2 reduction activity over NH2-MIL-125(Ti) by facet regulation. ACS Catal. 2021, 11, 650–658.
Zhang, H. B.; Wei, J.; Dong, J. C.; Liu, G. G.; Shi, L.; An, P. F.; Zhao, G. X.; Kong, J. T.; Wang, X. J.; Meng, X. G. et al. Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal–organic framework. Angew. Chem., Int. Ed. 2016, 55, 14310–14314.
Liu, J. J.; Song, X. Y.; Zhang, T.; Liu, S. Y.; Wen, H. R.; Chen, L. 2D conductive metal–organic frameworks: An emerging platform for electrochemical energy storage. Angew. Chem., Int. Ed. 2021, 60, 5612–5624.
Lin, Y.; Li, W. H.; Wen, Y. Y.; Wang, G. E.; Ye, X. L.; Xu, G. Layer-by-layer growth of preferred-oriented MOF thin film on nanowire array for high-performance chemiresistive sensing. Angew. Chem., Int. Ed. 2021, 60, 25758–25761.
Li, Q.; Lu, L. L.; Liu, J. W.; Shi, W.; Cheng, P. Two-dimensional bimetallic coordination polymers as bifunctional evolved electrocatalysts for enhanced oxygen evolution reaction and urea oxidation reaction. J. Energy Chem. 2021, 63, 230–238.
Xia, Y. S.; Tang, M. Z.; Zhang, L.; Liu, J.; Jiang, C.; Gao, G. K.; Dong, L. Z.; Xie, L. G.; Lan, Y. Q. Tandem utilization of CO2 photoreduction products for the carbonylation of aryl iodides. Nat. Commun. 2022, 13, 2964.
Yang, W.; Wang, H. J.; Liu, R. R.; Wang, J. W.; Zhang, C.; Li, C.; Zhong, D. C.; Lu, T. B. Tailoring crystal facets of metal–organic layers to enhance photocatalytic activity for CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 409–414.
Wang, J. W.; Qiao, L. Z.; Nie, H. D.; Huang, H. H.; Li, Y.; Yao, S.; Liu, M.; Zhang, Z. M.; Kang, Z. H.; Lu, T. B. Facile electron delivery from graphene template to ultrathin metal–organic layers for boosting CO2 photoreduction. Nat. Commun. 2021, 12, 813.
Han, B.; Ou, X. W.; Deng, Z. Q.; Song, Y.; Tian, C.; Deng, H.; Xu, Y. J.; Lin, Z. Nickel metal–organic framework monolayers for photoreduction of diluted CO2: Metal-node-dependent activity and selectivity. Angew. Chem., Int. Ed. 2018, 57, 16811–16815.
Yi, J. D.; Xie, R. K.; Xie, Z. L.; Chai, G. L.; Liu, T. F.; Chen, R. P.; Huang, Y. B.; Cao, R. Highly selective CO2 electroreduction to CH4 by in situ generated Cu2O single-type sites on a conductive MOF: Stabilizing key intermediates with hydrogen bonding. Angew. Chem., Int. Ed. 2020, 59, 23641–23648.
Miner, E. M.; Fukushima, T.; Sheberla, D.; Sun, L.; Surendranath, Y.; Dincă, M. Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2. Nat. Commun. 2016, 7, 10942.
Sheberla, D.; Bachman, J. C.; Elias, J. S.; Sun, C. J.; Shao-Horn, Y.; Dincă, M. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 2017, 16, 220–224.
Shinde, S. S.; Lee, C. H.; Jung, J. Y.; Wagh, N. K.; Kim, S. H.; Kim, D. H.; Lin, C.; Lee, S. U.; Lee, J. H. Unveiling dual-linkage 3D hexaiminobenzene metal–organic frameworks towards long-lasting advanced reversible Zn–air batteries. Energy Environ. Sci. 2019, 12, 727–738.
Hmadeh, M.; Lu, Z.; Liu, Z.; Gándara, F.; Furukawa, H.; Wan, S.; Augustyn, V.; Chang, R.; Liao, L.; Zhou, F. et al. New porous crystals of extended metal-catecholates. Chem. Mater. 2012, 24, 3511–3513.
Yao, M. S.; Zheng, J. J.; Wu, A. Q.; Xu, G.; Nagarkar, S. S.; Zhang, G.; Tsujimoto, M.; Sakaki, S.; Horike, S.; Otake, K. et al. A dual-ligand porous coordination polymer chemiresistor with modulated conductivity and porosity. Angew. Chem., Int. Ed. 2020, 59, 172–176.
Huang, N. Y.; He, H.; Liu, S. J.; Zhu, H. L.; Li, Y. J.; Xu, J.; Huang, J. R.; Wang, X.; Liao, P. Q.; Chen, X. M. Electrostatic attraction-driven assembly of a metal–organic framework with a photosensitizer boosts photocatalytic CO2 reduction to CO. J. Am. Chem. Soc. 2021, 143, 17424–17430.
Lan, G. X.; Li, Z.; Veroneau, S. S.; Zhu, Y. Y.; Xu, Z. W.; Wang, C.; Lin, W. B. Photosensitizing metal–organic layers for efficient sunlight-driven carbon dioxide reduction. J. Am. Chem. Soc. 2018, 140, 12369–12373.
Zuo, Q.; Liu, T. T.; Chen, C. S.; Ji, Y.; Gong, X. Q.; Mai, Y. Y.; Zhou, Y. F. Ultrathin metal–organic framework nanosheets with ultrahigh loading of single Pt atoms for efficient visible-light-driven photocatalytic H2 evolution. Angew. Chem., Int. Ed. 2019, 58, 10198–10203.
Meng, Z.; Mirica, K. A. Two-dimensional d-π conjugated metal–organic framework based on hexahydroxytrinaphthylene. Nano Res. 2021, 14, 369–375.
Chakraborty, G.; Park, I. H.; Medishetty, R.; Vittal, J. J. Two-dimensional metal–organic framework materials: Synthesis, structures, properties and applications. Chem. Rev. 2021, 121, 3751–3891.
Wang, M. C.; Dong, R. H.; Feng, X. L. Two-dimensional conjugated metal–organic frameworks (2D c-MOFs): Chemistry and function for MOFtronics. Chem. Soc. Rev. 2021, 50, 2764–2793.
Lahiri, N.; Lotfizadeh, N.; Tsuchikawa, R.; Deshpande, V. V.; Louie, J. Hexaaminobenzene as a building block for a family of 2D coordination polymers. J. Am. Chem. Soc. 2017, 139, 19–22.
Guillou, N.; Livage, C.; van Beek, W.; Noguès, M.; Férey, G. A layered nickel succinate with unprecedented hexanickel units: Structure elucidation from powder-diffraction data, and magnetic and sorption properties. Angew. Chem., Int. Ed. 2003, 42, 643–647.
Jiang, Y.; Oh, I.; Joo, S. H.; Seo, Y. S.; Lee, S. H.; Seong, W. K.; Kim, Y. J.; Hwang, J.; Kwak, S. K.; Yoo, J. W. et al. Synthesis of a copper 1,3,5-triamino-2,4,6-benzenetriol metal–organic framework. J. Am. Chem. Soc. 2020, 142, 18346–18354.
Banda, H.; Dou, J. H.; Chen, T. Y.; Libretto, N. J.; Chaudhary, M.; Bernard, G. M.; Miller, J. T.; Michaelis, V. K.; Dincă, M. High-capacitance pseudocapacitors from Li+ ion intercalation in nonporous, electrically conductive 2D coordination polymers. J. Am. Chem. Soc. 2021, 143, 2285–2292.
Forster, P. M.; Burbank, A. R.; O'Sullivan, M. C.; Guillou, N.; Livage, C.; Férey, G.; Stock, N.; Cheetham, A. K. Single-crystal characterization of Co7(OH)6(H2O)3(C4H4O4)4·7H2O; a new cobalt succinate identified through high-throughput synthesis. Solid State Sci. 2005, 7, 1549–1555.
Li, X. G.; Bi, W. T.; Chen, M. L.; Sun, Y. X.; Ju, H. X.; Yan, W. S.; Zhu, J. F.; Wu, X. J.; Chu, W. S.; Wu, C. Z. et al. Exclusive Ni-N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. J. Am. Chem. Soc. 2017, 139, 14889–14892.
Kim, D.; Xie, C. L.; Becknell, N.; Yu, Y.; Karamad, M.; Chan, K. R.; Crumlin, E. J.; Nørskov, J. K.; Yang, P. D. Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J. Am. Chem. Soc. 2017, 139, 8329–8336.