AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Polymer electrolytes reinforced by 2D fluorinated filler for all-solid-state Li-Fe-F conversion-type lithium metal batteries

Meng Lei1,3Xiaoxue Wu1,3,4( )Yangyang Liu1,2,3Keyi Chen1,3Jiulin Hu1,3Chilin Li1,2,3( )
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Show Author Information

Graphical Abstract

The two-dimensional (2D) CeF3 nanoplates are introduced into the solid polymer electrolyte to expand the electrochemical window and improve Li-ion conduction. The optimized electrolyte membrane enables the achievement of Li metal batteries with high endurability and stability, especially based on the conversion-type FeF3 cathode with high reversible capacity.

Abstract

The polyethylene oxide (PEO) based solid-state batteries are considered as promising candidates for the next-generation Li metal batteries with high energy density and safety. However, the low Li-ion conductivity and high-voltage endurability hinder the further applications of PEO-based electrolytes. To overcome these issues, herein two-dimensional (2D) CeF3 nanoplates with maximally exposed [001] crystal faces are introduced into the PEO matrix to expand the electrochemical window and improve Li-ion conduction and transport. The optimized crystal shape and crystal face anisotropy of CeF3 nanoplate filler reduce the crystallinity of composite solid polymer electrolyte (CSPE) via its Lewis acid-base interaction with ether oxygen of PEO. The Li-affinity [100] and Li-repellent [001] crystal faces of CeF3 nanoplates synergistically realize the dissociation of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), fast Li-adsorption/desorption, and Li+ migration. The optimized CSPE-0.1CeF3 membrane enables the achievement of Li metal batteries with high endurability and stability, from the kinetically favorable Li/Li symmetric cells with long-term cycling over 8000 h. The highly reversible Li/LiFePO4 cells exhibit a capacity retention of 109.2 mAh·g−1 after 1000 cycles at 1 C, corresponding to a low capacity fading rate of 0.026% per cycle. The conversion-type all-solid-state Li/CSPE-0.1CeF3/FeF3 cells show a high reversible capacity of 201.9 mAh·g−1 after long-term 600 cycles and of 231.1 mAh·g−1 at an ultra-high rate of 5 C.

Electronic Supplementary Material

Download File(s)
5406_ESM.pdf (3.2 MB)

References

[1]

Guo, Y.; Wu, S. C.; He, Y. B.; Kang, F. Y.; Chen, L. Q.; Li, H.; Yang, Q. H. Solid-state lithium batteries: Safety and prospects. eScience 2022, 2, 138–163.

[2]

Yang, Q. F.; Li, C. L. Li metal batteries and solid state batteries benefiting from halogen-based strategies. Energy Storage Mater. 2018, 14, 100–117.

[3]

Li, Y. J.; Guo, K.; Zhao, J. T.; Li, C. L. Anode interface modification of lithium metal batteries: Benefiting from functional additives and conformal coatings. Chin. Sci. Bull. 2021, 66, 2971–2990.

[4]

Wu, Q. P.; Zheng, Y. J.; Guan, X.; Xu, J.; Cao, F. H.; Li, C. L. Dynamical SEI reinforced by open-architecture MOF film with stereoscopic lithiophilic sites for high-performance lithium-metal batteries. Adv. Funct. Mater. 2021, 31, 2101034.

[5]

Zhang, Y.; Meng, J. W.; Chen, K. Y.; Wu, H.; Hu, J. L.; Li, C. L. Garnet-based solid-state lithium fluoride conversion batteries benefiting from eutectic interlayer of superior wettability. ACS Energy Lett. 2020, 5, 1167–1176.

[6]

Lei, M.; Fan, S. S.; Yu, Y. F.; Hu, J. L.; Chen, K. Y.; Gu, Y. P.; Wu, C. L.; Zhang, Y.; Li, C. L. NASICON-based solid state Li-Fe-F conversion batteries enabled by multi-interface-compatible sericin protein buffer layer. Energy Storage Mater 2022, 47, 551–560.

[7]

Wu, X. X.; Zheng, Y. J.; Li, W. B.; Liu, Y. Y.; Zhang, Y.; Li, Y. J.; Li, C. L. Solid electrolytes reinforced by infinite coordination polymer nano-network for dendrite-free lithium metal batteries. Energy Storage Mater. 2021, 41, 436–447.

[8]

Hu, J. L.; Chen, K. Y.; Yao, Z. G.; Li, C. L. Unlocking solid-state conversion batteries reinforced by hierarchical microsphere stacked polymer electrolyte. Sci. Bull. 2021, 66, 694–707.

[9]

Liu, Q. Y.; Yang, G. J.; Li, X. Y.; Zhang, S. M.; Chen, R. J.; Wang, X. F.; Gao, Y. R.; Wang, Z. X.; Chen, L. Q. Polymer electrolytes based on interactions between [solvent-Li+] complex and solvent-modified polymer. Energy Storage Mater. 2022, 51, 443–452.

[10]

Liang, J. Y.; Zeng, X. X.; Zhang, X. D.; Zuo, T. T.; Yan, M.; Yin, Y. X.; Shi, J. L.; Wu, X. W.; Guo, Y. G.; Wan, L. J. Engineering Janus interfaces of ceramic electrolyte via distinct functional polymers for stable high-voltage Li-metal batteries. J. Am. Chem. Soc. 2019, 141, 9165–9169.

[11]

Wei, S. Y.; Ma, L.; Hendrickson, K. E.; Tu, Z. Y.; Archer, L. A. Metal–sulfur battery cathodes based on PAN-sulfur composites. J. Am. Chem. Soc. 2015, 137, 12143–12152.

[12]

Wu, H. L.; Wang, J. L.; Zhao, Y.; Zhang, X. Q.; Xu, L.; Liu, H.; Cui, Y. X.; Cui, Y. H.; Li, C. L. A branched cellulose-reinforced composite polymer electrolyte with upgraded ionic conductivity for anode stabilized solid-state Li metal batteries. Sustainable Energy Fuels 2019, 3, 2642–2656.

[13]

Zhang, D. C.; Xu, X. J.; Qin, Y. L.; Ji, S. M.; Huo, Y. P.; Wang, Z. S.; Liu, Z. B.; Shen, J. D.; Liu, J. Recent progress in organic–inorganic composite solid electrolytes for all-solid-state lithium batteries. Chem. —Eur. J. 2020, 26, 1720–1736.

[14]

Su, Y.; Rong, X. H.; Gao, A.; Liu, Y.; Li, J. W.; Mao, M. L.; Qi, X. G.; Chai, G. L.; Zhang, Q. H.; Suo, L. M. et al. Rational design of a topological polymeric solid electrolyte for high-performance all-solid-state alkali metal batteries. Nat. Commun. 2022, 13, 4181.

[15]

Jaumaux, P.; Liu, Q.; Zhou, D.; Xu, X. F.; Wang, T. Y.; Wang, Y. Z.; Kang, F. Y.; Li, B. H.; Wang, G. X. Deep-eutectic-solvent-based self-healing polymer electrolyte for safe and long-life lithium-metal batteries. Angew. Chem., Int. Ed. 2020, 59, 9134–9142.

[16]

Yue, L. P.; Ma, J.; Zhang, J. J.; Zhao, J. W.; Dong, S. M.; Liu, Z. H.; Cui, G. L.; Chen, L. Q. All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Mater. 2016, 5, 139–164.

[17]

Khurana, R.; Schaefer, J. L.; Archer, L. A.; Coates, G. W. Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: A new approach for practical lithium-metal polymer batteries. J. Am. Chem. Soc. 2014, 136, 7395–7402.

[18]

Choi, B. K.; Kim, Y. W.; Shin, H. K. Ionic conduction in PEO-PAN blend polymer electrolytes. Electrochim. Acta 2000, 45, 1371–1374.

[19]

Zeng, X. X.; Yin, Y. X.; Li, N. W.; Du, W. C.; Guo, Y. G.; Wan, L. J. Reshaping lithium plating/stripping behavior via bifunctional polymer electrolyte for room-temperature solid Li metal batteries. J. Am. Chem. Soc. 2016, 138, 15825–15828.

[20]

Zhang, H. R.; Huang, L.; Xu, H. T.; Zhang, X. H.; Chen, Z.; Gao, C. H.; Lu, C. L.; Liu, Z.; Jiang, M. F.; Cui, G. L. A polymer electrolyte with a thermally induced interfacial ion-blocking function enables safety-enhanced lithium metal batteries. eScience 2022, 2, 201–208.

[21]

Hu, J. L.; Yao, Z. G.; Chen, K. Y.; Li, C. L. High-conductivity open framework fluorinated electrolyte bonded by solidified ionic liquid wires for solid-state Li metal batteries. Energy Storage Mater. 2020, 28, 37–46.

[22]

Wang, Y. J.; Pan, Y.; Kim, D. Conductivity studies on ceramic Li1.3Al0.3Ti1.7(PO4)3-filled PEO-based solid composite polymer electrolytes. J. Power Sources 2006, 159, 690–701.

[23]

Zheng, J.; Tang, M. X.; Hu, Y. Y. Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew. Chem., Int. Ed. 2016, 55, 12538–12542.

[24]

Wu, J. F.; Guo, X. MOF-derived nanoporous multifunctional fillers enhancing the performances of polymer electrolytes for solid-state lithium batteries. J. Mater. Chem. A 2019, 7, 2653–2659.

[25]

Wu, X. X.; Chen, K. Y.; Yao, Z. G.; Hu, J. L.; Huang, M. S.; Meng, J. W.; Ma, S. P.; Wu, T.; Cui, Y. H.; Li, C. L. Metal–organic framework reinforced polymer electrolyte with high cation transference number to enable dendrite-free solid state Li metal conversion batteries. J. Power Sources 2021, 501, 229946.

[26]

Lin, D. C.; Liu, W.; Liu, Y. Y.; Lee, H. R.; Hsu, P. C.; Liu, K.; Cui, Y. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano Lett. 2016, 16, 459–465.

[27]

Sheng, O. W.; Jin, C. B.; Luo, J. M.; Yuan, H. D.; Huang, H.; Gan, Y. P.; Zhang, J.; Xia, Y.; Liang, C.; Zhang, W. K. et al. Mg2B2O5 nanowire enabled multifunctional solid-state electrolytes with high ionic conductivity, excellent mechanical properties, and flame-retardant performance. Nano Lett. 2018, 18, 3104–3112.

[28]

Tang, W. J.; Tang, S.; Zhang, C. J.; Ma, Q. T.; Xiang, Q.; Yang, Y. W.; Luo, J. Y. Simultaneously enhancing the thermal stability, mechanical modulus, and electrochemical performance of solid polymer electrolytes by incorporating 2D sheets. Adv. Energy Mater. 2018, 8, 1800866.

[29]

Shim, J.; Kim, H. J.; Kim, B. G.; Kim, Y. S.; Kim, D. G.; Lee, J. C. 2D boron nitride nanoflakes as a multifunctional additive in gel polymer electrolytes for safe, long cycle life and high rate lithium metal batteries. Energy Environ. Sci. 2017, 10, 1911–1916.

[30]

Hu, J. L.; Tian, J.; Li, C. L. Nanostructured carbon nitride polymer-reinforced electrolyte to enable dendrite-suppressed lithium metal batteries. ACS Appl. Mater. Interfaces 2017, 9, 11615–11625.

[31]

Li, C. X.; Liu, X. M.; Yang, P. P.; Zhang, C. M.; Lian, H. Z.; Lin, J. LaF3, CeF3, CeF3: Tb3+, and CeF3: Tb3+@LaF3 (core–shell) nanoplates:  Hydrothermal synthesis and luminescence properties. J. Phys. Chem. C 2008, 112, 2904–2910.

[32]

Hu, J. L.; Zhang, Y.; Cao, D. P.; Li, C. L. Dehydrating bronze iron fluoride as a high capacity conversion cathode for lithium batteries. J. Mater. Chem. A 2016, 4, 16166–16174.

[33]

Chai, R. T.; Lian, H. Z.; Li, C. X.; Cheng, Z. Y.; Hou, Z. Y.; Huang, S. S.; Lin, J. In situ preparation and luminescent properties of CeF3 and CeF3:Tb3+ nanoparticles and transparent CeF3:Tb3+/PMMA nanocomposites in the visible spectral range. J. Phys. Chem. C 2009, 113, 8070–8076.

[34]

Zhang, Y.; Chen, J. Controllable preparation of CeF3: Tb3+ nanostructures with different morphologies from an ionic liquid-based extraction system. Colloids Surf. A Physicochem. Eng. Aspects 2015, 470, 130–136.

[35]

Wu, H.; Wu, Q. P.; Chu, F. L.; Hu, J. L.; Cui, Y. H.; Yin, C. L.; Li, C. L. Sericin protein as a conformal protective layer to enable air-endurable Li metal anodes and high-rate Li-S batteries. J. Power Sources 2019, 419, 72–81.

[36]

Yang, Q. F.; Hu, J. L.; Meng, J. W.; Li, C. L. C–F-rich oil drop as a non-expendable fluid interface modifier with low surface energy to stabilize a Li metal anode. Energy Environ. Sci. 2021, 14, 3621–3631.

[37]

Liu, J.; Shen, X. W.; Zhou, J. Q.; Wang, M. F.; Niu, C. Q.; Qian, T.; Yan, C. L. Nonflammable and high-voltage-tolerated polymer electrolyte achieving high stability and safety in 4.9 V-class lithium metal battery. ACS Appl. Mater. Interfaces 2019, 11, 45048–45056.

[38]

Dey, A.; Karan, S.; De, S. K. Molecular interaction and ionic conductivity of polyethylene oxide-LiClO4 nanocomposites. J. Phys. Chem. Solids 2010, 71, 329–335.

[39]

Wang, Z. N.; Wang, S.; Wang, A. L.; Liu, X.; Chen, J.; Zeng, Q. H.; Zhang, L.; Liu, W.; Zhang, L. Y. Covalently linked metal–organic framework (MOF)-polymer all-solid-state electrolyte membranes for room temperature high performance lithium batteries. J. Mater. Chem. A 2018, 6, 17227–17234.

[40]

Wieczorek, W.; Raducha, D.; Zalewska, A.; Stevens, J. R. Effect of salt concentration on the conductivity of PEO-based composite polymeric electrolytes. J. Phys. Chem. B 1998, 102, 8725–8731.

[41]

Lammert, M.; Wharmby, M. T.; Smolders, S.; Bueken, B.; Lieb, A.; Lomachenko, K. A.; Vos, D. D.; Stock, N. Cerium-based metal–organic frameworks with UiO-66 architecture: Synthesis, properties and redox catalytic activity. Chem. Commun. 2015, 51, 12578–12581.

[42]

Lin, Y.; Wang, X. M.; Liu, J.; Miller, J. D. Natural halloysite nano-clay electrolyte for advanced all-solid-state lithium-sulfur batteries. Nano Energy 2017, 31, 478–485.

[43]

Huo, H. Y.; Wu, B.; Zhang, T.; Zheng, X. S.; Ge, L.; Xu, T. W.; Guo, X. X.; Sun, X. L. Anion-immobilized polymer electrolyte achieved by cationic metal–organic framework filler for dendrite-free solid-state batteries. Energy Storage Mater. 2019, 18, 59–67.

[44]

Chen, N.; Dai, Y. J.; Xing, Y.; Wang, L. L.; Guo, C.; Chen, R. J.; Guo, S. J.; Wu, F. Biomimetic ant-nest ionogel electrolyte boosts the performance of dendrite-free lithium batteries. Energy Environ. Sci. 2017, 10, 1660–1667.

[45]

Suo, L. M.; Oh, D.; Lin, Y. X.; Zhuo, Z. Q.; Borodin, O.; Gao, T.; Wang, F.; Kushima, A.; Wang, Z. Q.; Kim, H. C. et al. How solid-electrolyte interphase forms in aqueous electrolytes. J. Am. Chem. Soc. 2017, 139, 18670–18680.

[46]

Liang, Y.; Liu, Y.; Chen, D.; Dong, L.; Guang, Z.; Liu, J.; Yuan, B.; Yang, M.; Dong, Y.; Li, Q. et al. Hydroxyapatite functionalization of solid polymer electrolytes for high-conductivity solid-state lithium-ion batteries. Mater. Today Energy 2021, 20, 100694.

[47]

Wu, H.; Yao, Z. G.; Wu, Q. P.; Fan, S. S.; Yin, C. L.; Li, C. L. Confinement effect and air tolerance of Li plating by lithiophilic poly(vinyl alcohol) coating for dendrite-free Li metal batteries. J. Mater. Chem. A 2019, 7, 22257–22264.

[48]

Li, C. L.; Chen, K. Y.; Zhou, X. J.; Maier, J. Electrochemically driven conversion reaction in fluoride electrodes for energy storage devices. npj Comput. Mater. 2018, 4, 22.

[49]

Chen, K. Y.; Lei, M.; Yao, Z. G.; Zheng, Y. J.; Hu, J. L.; Lai, C. Z.; Li, C. L. Construction of solid-liquid fluorine transport channel to enable highly reversible conversion cathodes. Sci. Adv. 2021, 7, eabj1491.

[50]

Wang, L. P.; Wu, Z. R.; Zou, J.; Gao, P.; Niu, X. B.; Li, H.; Chen, L. Q. Li-free cathode materials for high energy density lithium batteries. Joule 2019, 3, 2086–2102.

[51]

Zhang, Y.; Meng, J. W.; Chen, K. Y.; Wu, Q. P.; Wu, X. X.; Li, C. L. Behind the candelabra: A facile flame vapor deposition method for interfacial engineering of garnet electrolyte to enable ultralong cycling solid-state Li-FeF3 conversion batteries. ACS Appl. Mater. Interfaces 2020, 12, 33729–33739.

[52]

Zhang, D. C.; Xu, X. J.; Huang, X. Y.; Shi, Z. C.; Wang, Z. S.; Liu, Z. B.; Hu, R. Z.; Liu, J.; Zhu, M. A flexible composite solid electrolyte with a highly stable interphase for dendrite-free and durable all-solid-state lithium metal batteries. J. Mater. Chem. A 2020, 8, 18043–18054.

[53]

Zhang, D. C.; Liu, Z. B.; Wu, Y. W.; Ji, S. M.; Yuan, Z. X.; Liu, J.; Zhu, M. In situ construction a stable protective layer in polymer electrolyte for ultralong lifespan solid-state lithium metal batteries. Adv. Sci. 2022, 9, 2104277.

[54]

Li, C. C.; Zhang, X. S.; Zhu, Y. H.; Zhang, Y.; Xin, S.; Wan, L. J.; Guo, Y. G. Modulating the lithiophilicity at electrode/electrolyte interface for high-energy Li-metal batteries. Energy Mater. 2022, 1, 100017.

Nano Research
Pages 8469-8477
Cite this article:
Lei M, Wu X, Liu Y, et al. Polymer electrolytes reinforced by 2D fluorinated filler for all-solid-state Li-Fe-F conversion-type lithium metal batteries. Nano Research, 2023, 16(6): 8469-8477. https://doi.org/10.1007/s12274-023-5406-7
Topics:
Part of a topical collection:

9472

Views

23

Crossref

23

Web of Science

24

Scopus

2

CSCD

Altmetrics

Received: 28 September 2022
Revised: 02 December 2022
Accepted: 02 December 2022
Published: 21 January 2023
© Tsinghua University Press 2023
Return