AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Construction of twisted graphene–silicene heterostructures

Guangyuan Han1,2Huan Shan1,2Lizhi Zhang2,3Wenpeng Xu1,2Zhao-Yan Gao1,2Hui Guo1,2Geng Li1,2,4( )Hong-Jun Gao1,2,4
Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
Songshan Lake Materials Laboratory, Dongguan 523808, China
Show Author Information

Graphical Abstract

Twisted graphene/silicene heterobilayers are fabricated on Ru (0001) crystal via silicon intercalation. Twisting structures are demonstrated by a variety of moiré patterns provided by the single-crystalline graphene grown on different grains of the Ru substrate.

Abstract

Van der Waals stacking of two-dimensional crystals with rotation or mismatch in lattice constants gives rise to rich physical phenomena that are closely related to the strong correlations and band topology. Twisted graphene and silicene heterobilayers have been theoretically predicted to host a tunable transport gap due to the mismatch of Dirac cones in the graphene and silicene layers. However, experimental realization of such twisted structure is challenging. Here, we report the formation of twisted graphene/silicene bilayers on Ru (0001) crystal via intercalation. Different moiré patterns form as single-crystalline graphene grows over different grains of the Ru surface. After silicon intercalation, graphene/silicene bilayers are observed with different twisting angles on top of different grains of the Ru substrate. Our work provides a new pathway towards construction of graphene based twisted heterobilayers.

Electronic Supplementary Material

Download File(s)
12274_2023_5408_MOESM1_ESM.pdf (1.8 MB)

References

[1]

Andrei, E. Y.; Efetov, D. K.; Jarillo-Herrero, P.; MacDonald, A. H.; Mak, K. F.; Senthil, T.; Tutuc, E.; Yazdani, A.; Young, A. F. The marvels of moiré materials. Nat. Rev. Mater. 2021, 6, 201–206.

[2]

Andrei, E. Y.; MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 2020, 19, 1265–1275.

[3]

Cao, Y.; Fatemi, V.; Demir, A.; Fang, S.; Tomarken, S. L.; Luo, J. Y.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Kaxiras, E. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 2018, 556, 80–84.

[4]

Cao, Y.; Fatemi, V.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50.

[5]

Sharpe, A. L.; Fox, E. J.; Barnard, A. W.; Finney, J.; Watanabe, K.; Taniguchi, T.; Kastner, M. A.; Goldhaber-Gordon, D. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 2019, 365, 605–608.

[6]

Park, J. M.; Cao, Y.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P. Flavour Hund’s coupling, Chern gaps and charge diffusivity in moiré graphene. Nature 2021, 592, 43–48.

[7]

Li, H. Y.; Li, S. W.; Regan, E. C.; Wang, D. Q.; Zhao, W. Y.; Kahn, S.; Yumigeta, K.; Blei, M.; Taniguchi, T.; Watanabe, K. et al. Imaging two-dimensional generalized Wigner crystals. Nature 2021, 597, 650–654.

[8]

Kezilebieke, S.; Huda, M. N.; Vaňo, V.; Aapro, M.; Ganguli, S. C.; Silveira, O. J.; Głodzik, S.; Foster, A. S.; Ojanen, T.; Liljeroth, P. Topological superconductivity in a van der Waals heterostructure. Nature 2020, 588, 424–428.

[9]

Xie, H. C.; Luo, X. P.; Ye, G. H.; Ye, Z. P.; Ge, H. W.; Sung, S. H.; Rennich, E.; Yan, S. H.; Fu, Y.; Tian, S. J. et al. Twist engineering of the two-dimensional magnetism in double bilayer chromium triiodide homostructures. Nat. Phys. 2022, 18, 30–36.

[10]

Song, T. C.; Sun, Q. C.; Anderson, E.; Wang, C.; Qian, J. M.; Taniguchi, T.; Watanabe, K.; McGuire, M. A.; Stöhr, R.; Xiao, D. et al. Direct visualization of magnetic domains and moiré magnetism in twisted 2D magnets. Science 2021, 374, 1140–1144.

[11]

Yankowitz, M.; Chen, S. W.; Polshyn, H.; Zhang, Y. X.; Watanabe, K.; Taniguchi, T.; Graf, D.; Young, A. F.; Dean, C. R. Tuning superconductivity in twisted bilayer graphene. Science 2019, 363, 1059–1064.

[12]

Nimbalkar, A.; Kim, H. Opportunities and challenges in twisted bilayer graphene: A review. Nano-Micro Lett. 2020, 12, 126.

[13]

Jiang, Y. H.; Lai, X. Y.; Watanabe, K.; Taniguchi, T.; Haule, K.; Mao, J. H.; Andrei, E. Y. Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene. Nature 2019, 573, 91–95.

[14]

Fournier, C.; Plaud, A.; Roux, S.; Pierret, A.; Rosticher, M.; Watanabe, K.; Taniguchi, T.; Buil, S.; Quélin, X.; Barjon, J. et al. Position-controlled quantum emitters with reproducible emission wavelength in hexagonal boron nitride. Nat. Commun. 2021, 12, 3779.

[15]

Liao, M. Z.; Wu, Z. W.; Du, L. J.; Zhang, T. T.; Wei, Z.; Zhu, J. Q.; Yu, H.; Tang, J.; Gu, L.; Xing, Y. X. et al. Twist angle-dependent conductivities across MoS2/graphene heterojunctions. Nat. Commun. 2018, 9, 4068.

[16]

Liao, M. Z.; Wei, Z.; Du, L. J.; Wang, Q. Q.; Tang, J.; Yu, H.; Wu, F. F.; Zhao, J. J.; Xu, X. Z.; Han, B. et al. Precise control of the interlayer twist angle in large scale MoS2 homostructures. Nat. Commun. 2020, 11, 2153.

[17]

Zhang, X. Z.; Yang, H.; Hou, W. W.; Zheng, X. M.; Zhang, Y.; Zhang, R. Y.; Deng, C. Y.; Zhang, X. A.; Qin, S. Q. Twist-angle modulation of exciton absorption in MoS2/graphene heterojunctions. Appl. Phys. Lett. 2019, 115, 181901.

[18]

Wang, L.; Shih, E. M.; Ghiotto, A.; Xian, L. D.; Rhodes, D. A.; Tan, C.; Claassen, M.; Kennes, D. M.; Bai, Y. S.; Kim, B. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 2020, 19, 861–866.

[19]

Zhang, Z. M.; Wang, Y. M.; Watanabe, K.; Taniguchi, T.; Ueno, K.; Tutuc, E.; LeRoy, B. J. Flat bands in twisted bilayer transition metal dichalcogenides. Nat. Phys. 2020, 16, 1093–1096.

[20]

Zhao, W. M.; Zhu, L.; Nie, Z. W.; Li, Q. Y.; Wang, Q. W.; Dou, L. G.; Hu, J. G.; Xian, L. D.; Meng, S.; Li, S. C. Moiré enhanced charge density wave state in twisted 1T-TiTe2/1T-TiSe2 heterostructures. Nat. Mater. 2022, 21, 284–289.

[21]

Zhu, Y. Y.; Liao, M. H.; Zhang, Q. H.; Xie, H. Y.; Meng, F. Q.; Liu, Y. W.; Bai, Z. H.; Ji, S. H.; Zhang, J.; Jiang, K. L. et al. Presence of s-wave pairing in Josephson junctions made of twisted ultrathin Bi2Sr2CaCu2O8+x flakes. Phys. Rev. X 2021, 11, 031011.

[22]

Wang, Y. Y.; Ni, Z. Y.; Liu, Q. H.; Quhe, R.; Zheng, J. X.; Ye, M.; Yu, D. P.; Shi, J. J.; Yang, J. B.; Li, J. et al. All-metallic vertical transistors based on stacked dirac materials. Adv. Funct. Mater. 2015, 25, 68–77.

[23]

Peymanirad, F.; Neek-Amal, M.; Beheshtian, J.; Peeters, F. M. Graphene-silicene bilayer: A nanocapacitor with permanent dipole and piezoelectricity effect. Phys. Rev. B 2015, 92, 155113.

[24]

Molle, A.; Grazianetti, C.; Tao, L.; Taneja, D.; Alam, M. H.; Akinwande, D. Silicene, silicene derivatives, and their device applications. Chem. Soc. Rev. 2018, 47, 6370–6387.

[25]

Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.

[26]

Li, G.; Zhang, Y. Y.; Guo, H.; Huang, L.; Lu, H. L.; Lin, X.; Wang, Y. L.; Du, S. X.; Gao, H. J. Epitaxial growth and physical properties of 2D materials beyond graphene: From monatomic materials to binary compounds. Chem. Soc. Rev. 2018, 47, 6073–6100.

[27]

Li, G.; Zhang, L. Z.; Xu, W. Y.; Pan, J. B.; Song, S. R.; Zhang, Y.; Zhou, H. T.; Wang, Y. L.; Bao, L. H.; Zhang, Y. Y. et al. Stable silicene in graphene/silicene van der Waals heterostructures. Adv. Mater. 2018, 30, 1804650.

[28]

Guo, H.; Zhang, R. Z.; Li, H.; Wang, X. Y.; Lu, H. L.; Qian, K.; Li, G.; Huang, L.; Lin, X.; Zhang, Y. Y. et al. Sizable band gap in epitaxial bilayer graphene induced by silicene intercalation. Nano Lett. 2020, 20, 2674–2680.

[29]

Ben Jabra, Z.; Abel, M.; Fabbri, F.; Aqua, J. N.; Koudia, M.; Michon, A.; Castrucci, P.; Ronda, A.; Vach, H.; De Crescenzi, M. et al. Van der Waals heteroepitaxy of air-stable quasi-free-standing silicene layers on CVD epitaxial graphene/6H-SiC. ACS Nano 2022, 16, 5920–5931.

[30]

Pan, Y.; Shi, D. X.; Gao, H. J. Formation of graphene on Ru (0001) surface. Chin. Phys. 2007, 16, 3151–3153.

[31]

Pan, Y.; Zhang, H. G.; Shi, D. X.; Sun, J. T.; Du, S. X.; Liu, F.; Gao, H. J. Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru (0001). Adv. Mater. 2009, 21, 2777–2780.

[32]

Sutter, E.; Albrecht, P.; Sutter, P. Graphene growth on polycrystalline Ru thin films. Appl. Phys. Lett. 2009, 95, 133109.

[33]

Zhang, L. N.; Dong, J. C.; Guan, Z. Y.; Zhang, X. Y.; Ding, F. The alignment-dependent properties and applications of graphene moiré superstructures on the Ru (0001) surface. Nanoscale 2020, 12, 12831–12839.

[34]

Wu, Z. B.; Gao, Z. Y.; Chen, X. Y.; Xing, Y. Q.; Yang, H.; Li, G.; Ma, R. S.; Wang, A. W.; Yan, J. H.; Shen, C. M. et al. A low-temperature scanning probe microscopy system with molecular beam epitaxy and optical access. Rev. Sci. Instrum. 2018, 89, 113705.

[35]

Becker, R. S.; Golovchenko, J. A.; Swartzentruber, B. S. Electron interferometry at crystal surfaces. Phys. Rev. Lett. 1985, 55, 987–990.

[36]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[37]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[38]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[39]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[40]

Sutter, P. W.; Flege, J. I.; Sutter, E. A. Epitaxial graphene on ruthenium. Nat. Mater. 2008, 7, 406–411.

[41]

Ophus, C.; Shekhawat, A.; Rasool, H.; Zettl, A. Large-scale experimental and theoretical study of graphene grain boundary structures. Phys. Rev. B 2015, 92, 205402.

[42]

Zhang, H. G.; Hu, H.; Pan, Y.; Mao, J. H.; Gao, M.; Guo, H. M.; Du, S. X.; Greber, T.; Gao, H. J. Graphene based quantum dots. J. Phys. Condens. Matter 2010, 22, 302001.

[43]

Meng, L.; Wu, R. T.; Zhang, L. Z.; Li, L. F.; Du, S. X.; Wang, Y. L.; Gao, H. J. Multi-oriented moiré superstructures of graphene on Ir (111): Experimental observations and theoretical models. J. Phys. Condens. Matter 2012, 24, 314214.

[44]

Li, G.; Zhou, H. T.; Pan, L. D.; Zhang, Y.; Huang, L.; Xu, W. Y.; Du, S. X.; Ouyang, M.; Ferrari, A. C.; Gao, H. J. Role of cooperative interactions in the intercalation of heteroatoms between graphene and a metal substrate. J. Am. Chem. Soc. 2015, 137, 7099–7103.

[45]

Gao, Z. Y.; Xu, W. P.; Gao, Y. X.; Guzman, R.; Guo, H.; Wang, X. Y.; Zheng, Q.; Zhu, Z. L.; Zhang, Y. Y.; Lin, X. et al. Experimental realization of atomic monolayer Si9C15. Adv. Mater. 2022, 34, 2204779.

Nano Research
Pages 7926-7930
Cite this article:
Han G, Shan H, Zhang L, et al. Construction of twisted graphene–silicene heterostructures. Nano Research, 2023, 16(5): 7926-7930. https://doi.org/10.1007/s12274-023-5408-5
Topics:

11625

Views

2

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 12 October 2022
Revised: 30 November 2022
Accepted: 15 December 2022
Published: 11 February 2023
© Tsinghua University Press 2023
Return