AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Modulating hydrothermal condition to achieve carbon dots-zeolite composites with multicolor afterglow

Jiali Wen1Zhifeng Zeng1Bolun Wang2Junyu Hong1Yingyuan Chen1Jianyu Zhang3Jiyang Li2( )Jiuxing Jiang1,4( )
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
Guangdong Provincial Key Laboratory of Optical Chemicals, XinHuaYue Group, Maoming 525000, China
Show Author Information

Graphical Abstract

Two carbon dots (CDs) based zeolitic composites: CD1@MCM-22P and CD2@ZSM-12 were obtained through a one-step hydrothermal method. CD1@MCM-22P owns temperature-dependent room-temperature phosphorescence/thermally activated delayed fluorescence (RTP/TADF) convertible afterglow, while CD2@ZSM-12 is equipped with excitation-dependent RTP.

Abstract

Responsive luminescence materials with prolonged lifetime and multicolor emission have drawn great attention due to their attractive optical property and potential applications. Herein, two responsive carbon dots (CDs) based composites: CD1@MCM-22P and CD2@ZSM-12 were achieved by a one-step hydrothermal method. By adjusting the hydrothermal condition, CD1@MCM-22P owns temperature-dependent afterglow, while CD2@ZSM-12 is equipped with excitation-dependent room-temperature phosphorescence. The photoluminescence mechanisms of CD1@MCM-22P and CD2@ZSM-12 were investigated and proposed, and the composites were applied in multi-mode anti-counterfeiting. This work provides an insight as well as a feasible method for the development of multi-emissive CDs@zeolite composite.

Electronic Supplementary Material

Download File(s)
12274_2023_5410_MOESM1_ESM.pdf (1.7 MB)

References

[1]

Zhao, Y.; Shi, C.; Yang, X. D.; Shen, B. W.; Sun, Y. Q.; Chen, Y.; Xu, X. W.; Sun, H. C.; Yu, K.; Yang, B. et al. pH- and temperature-sensitive hydrogel nanoparticles with dual photoluminescence for bioprobes. ACS Nano 2016, 10, 5856–5863.

[2]

Nakamitsu, M.; Oyama, K.; Imai, H.; Fujii, S.; Oaki, Y. Ultrahigh-sensitive compression-stress sensor using integrated stimuli-responsive materials. Adv. Mater. 2021, 33, 2008755.

[3]

Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991–1003.

[4]

Lin, Z.; Wang, H.; Yu, M. L.; Guo, X.; Zhang, C. H.; Deng, H. T.; Zhang, P. S.; Chen, S.; Zeng, R. J.; Cui, J. X. et al. Photoswitchable ultrahigh-brightness red fluorescent polymeric nanoparticles for information encryption, anti-counterfeiting and bioimaging. J. Mater. Chem. C 2019, 7, 11515–11521.

[5]

Huang, G. X.; Jiang, Y. Q.; Yang, S. F.; Li, B. S.; Tang, B. Z. Multistimuli response and polymorphism of a novel tetraphenylethylene derivative. Adv. Funct. Mater. 2019, 29, 1900516.

[6]

Abdollahi, A.; Alidaei-Sharif, H.; Roghani-Mamaqani, H.; Herizchi, A. Photoswitchable fluorescent polymer nanoparticles as high-security anticounterfeiting materials for authentication and optical patterning. J. Mater. Chem. C 2020, 8, 5476–5493.

[7]

Xiong, X. Q.; Song, F. L.; Wang, J. Y.; Zhang, Y. K.; Xue, Y. Y.; Sun, L. L.; Jiang, N.; Gao, P.; Tian, L.; Peng, X. J. Thermally activated delayed fluorescence of fluorescein derivative for time-resolved and confocal fluorescence imaging. J. Am. Chem. Soc. 2014, 136, 9590–9597.

[8]

Gao, R.; Yan, D. P.; Evans, D. G.; Duan, X. Layer-by-layer assembly of long-afterglow self-supporting thin films with dual-stimuli-responsive phosphorescence and antiforgery applications. Nano Res. 2017, 10, 3606–3617.

[9]

Li, D.; Yang, J.; Fang, M. M.; Tang, B. Z.; Li, Z. Stimulus-responsive room temperature phosphorescence materials with full-color tunability from pure organic amorphous polymers. Sci. Adv. 2022, 8, eabl8392.

[10]

Huang, Y. S.; Zheng, X.; Yao, Z. Z.; Lv, W.; Xiang, S. C.; Ling, Q. D.; Lin, Z. H. Multimode stimuli responsive dual-state organic room temperature phosphorescence from a phenanthrene derivative. Chem. Eng. J. 2022, 444, 136629.

[11]

Sun, Y. P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A. S.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H. F. et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756–7757.

[12]

Baker, S. N.; Baker, G. A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem., Int. Ed. 2010, 49, 6726–6744.

[13]

Liu, J. J.; Li, R.; Yang, B. Carbon dots: A new type of carbon-based nanomaterial with wide applications. ACS Cent. Sci. 2020, 6, 2179–2195.

[14]

Ru, Y.; Ai, L.; Jia, T. T.; Liu, X. J.; Lu, S. Y.; Tang, Z. Y.; Yang, B. Recent advances in chiral carbonized polymer dots: From synthesis and properties to applications. Nano Today 2020, 34, 100953.

[15]

Wang, H.; Zhao, E. G.; Lam, J. W. Y.; Tang, B. Z. AIE luminogens: Emission brightened by aggregation. Mater. Today 2015, 18, 365–377.

[16]

Wang, D.; Tang, B. Z. Aggregation-induced emission luminogens for activity-based sensing. Acc. Chem. Res. 2019, 52, 2559–2570.

[17]

Zhang, J. Y.; Hu, L. R.; Zhang, K. H.; Liu, J. K.; Li, X. G.; Wang, H. R.; Wang, Z. Y.; Sung, H. H. Y.; Williams, I. D.; Zeng, Z. B. et al. How to manipulate through-space conjugation and clusteroluminescence of simple aiegens with isolated phenyl rings. J. Am. Chem. Soc. 2021, 143, 9565–9574.

[18]

Qu, S. N.; Wang, X. Y.; Lu, Q. P.; Liu, X. Y.; Wang, L. J. A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angew. Chem., Int. Ed. 2012, 51, 12215–12218.

[19]

Chen, Y. H.; Zheng, M. T.; Xiao, Y.; Dong, H. W.; Zhang, H. R.; Zhuang, J. L.; Hu, H.; Lei, B. F.; Liu, Y. L. A self-quenching-resistant carbon-dot powder with tunable solid-state fluorescence and construction of dual-fluorescence morphologies for white light-emission. Adv. Mater. 2016, 28, 312–318.

[20]

Sun, Y. Q.; Liu, J. K.; Pang, X. L.; Zhang, X. J.; Zhuang, J. L.; Zhang, H. R.; Hu, C. F.; Zheng, M. T.; Lei, B. F.; Liu, Y. L. Temperature-responsive conversion of thermally activated delayed fluorescence and room-temperature phosphorescence of carbon dots in silica. J. Mater. Chem. C 2020, 8, 5744–5751.

[21]

Deng, Y. H.; Zhao, D. X.; Chen, X.; Wang, F.; Song, H.; Shen, D. Z. Long lifetime pure organic phosphorescence based on water soluble carbon dots. Chem. Commun. 2013, 49, 5751–5753.

[22]

Zhang, H. Y.; Wang, B. L.; Yu, X. W.; Li, J. Y.; Shang, J.; Yu, J. H. Carbon dots in porous materials: Host-guest synergy for enhanced performance. Angew. Chem., Int. Ed. 2020, 59, 19390–19402.

[23]

Liu, J. C.; Zhang, H. Y.; Wang, N.; Yu, Y.; Cui, Y. Z.; Li, J. Y.; Yu, J. H. Template-modulated afterglow of carbon dots in zeolites: Room-temperature phosphorescence and thermally activated delayed fluorescence. ACS Mater. Lett. 2019, 1, 58–63.

[24]

He, L.; Wang, T. T.; An, J. P.; Li, X. M.; Zhang, L. Y.; Li, L.; Li, G. Z.; Wu, X. T.; Su, Z. M.; Wang, C. G. Carbon nanodots@zeolitic imidazolate framework-8 nanoparticles for simultaneous ph-responsive drug delivery and fluorescence imaging. CrystEngComm 2014, 16, 3259–3263.

[25]

Song, S. Y.; Liu, K. K.; Cao, Q.; Mao, X.; Zhao, W. B.; Wang, Y.; Liang, Y. C.; Zang, J. H.; Lou, Q.; Dong, L. et al. Ultraviolet phosphorescent carbon nanodots. Light: Sci. Appl. 2022, 11, 146.

[26]

Liang, Y. C.; Cao, Q.; Liu, K. K.; Peng, X. Y.; Sui, L. Z.; Wang, S. P.; Song, S. Y.; Wu, X. Y.; Zhao, W. B.; Deng, Y. et al. Phosphorescent carbon-nanodots-assisted förster resonant energy transfer for achieving red afterglow in an aqueous solution. ACS Nano 2021, 15, 16242–16254.

[27]

Tao, S. Y.; Zhou, C. J.; Kang, C. Y.; Zhu, S. J.; Feng, T. L.; Zhang, S. T.; Ding, Z. Y.; Zheng, C. Y.; Xia, C. L.; Yang, B. Confined-domain crosslink-enhanced emission effect in carbonized polymer dots. Light: Sci. Appl. 2022, 11, 56.

[28]

Wang, Y. Q.; Wang, C. T.; Wang, L. X.; Wang, L.; Xiao, F. S. Zeolite fixed metal nanoparticles: New perspective in catalysis. Acc. Chem. Res. 2021, 54, 2579–2590.

[29]

Choi, Y.; Choi, Y.; Kwon, O. H.; Kim, B. S. Carbon dots: Bottom-up syntheses, properties, and light-harvesting applications. Chem.- Asian J. 2018, 13, 586–598.

[30]

Dong, Y. Q.; Pang, H. C.; Yang, H. B.; Guo, C. X.; Shao, J. W.; Chi, Y. W.; Li, C. M.; Yu, T. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew. Chem., Int. Ed. 2013, 52, 7800–7804.

[31]

Liu, J. C.; Wang, N.; Yu, Y.; Yan, Y.; Zhang, H. Y.; Li, J. Y.; Yu, J. H. Carbon dots in zeolites: A new class of thermally activated delayed fluorescence materials with ultralong lifetimes. Sci. Adv. 2017, 3, e1603171.

[32]

Zong, S. Y.; Wang, B. L.; Yin, X.; Ma, W. Y.; Zhang, J. N.; Li, J. Y. Calcination-controlled fabrication of carbon dots@zeolite composites with multicolor fluorescence and phosphorescence. Nano Res. 2022, 15, 9454–9460.

[33]

Wang, B. L.; Yu, Y.; Zhang, H. Y.; Xuan, Y. Z.; Chen, G. R.; Ma, W. Y.; Li, J. Y.; Yu, J. H. Carbon dots in a matrix: Energy-transfer-enhanced room-temperature red phosphorescence. Angew. Chem., Int. Ed. 2019, 58, 18443–18448.

[34]

Yu, X. W.; Liu, K. K.; Zhang, H. Y.; Wang, B. L.; Ma, W. Y.; Li, J. Y.; Yu, J. H. Carbon dots-in-EuAPO-5 zeolite: Triple-emission for multilevel luminescence anti-counterfeiting. Small 2021, 17, 2103374.

[35]

Liu, Y. C.; Kang, X.; Xu, Y. Q.; Li, Y. R.; Wang, S.; Wang, C. Y.; Hu, W. Q.; Wang, R. H.; Liu, J. C. Modulating the carbonization degree of carbon dots for multicolor afterglow emission. ACS Appl. Mater. Interfaces 2022, 14, 22363–22371.

[36]

Ostroumova, V. A.; Maksimov, A. L. MWW-type zeolites: MCM-22, MCM-36, MCM-49, and MCM-56 (a review). Pet. Chem. 2019, 59, 788–801.

[37]

Feng, G.; Wen, Z. H.; Wang, J. C.; Lu, Z. H.; Zhou, J.; Zhang, R. B. Guiding the design of practical MTW zeolite catalysts: An integrated experimental-theoretical perspective. Microporous Mesoporous Mater. 2021, 312, 110810.

[38]

Liu, W. F.; Jia, H. S.; Zhang, J.; Shao, L.; Wang, J.; Fang, D. W. A novel dual-excitation and dual-emission fluorescent probe CDs-COO-F for hydrazine detection in aqueous solutions and living cells. Dyes Pigm. 2021, 184, 108831.

[39]

Wang, Q.; Zhang, S. R.; Zhong, Y. G.; Yang, X. F.; Li, Z.; Li, H. Preparation of yellow-green-emissive carbon dots and their application in constructing a fluorescent turn-on nanoprobe for imaging of selenol in living cells. Anal. Chem. 2017, 89, 1734–1741.

[40]

Jiang, K.; Wang, Y. H.; Gao, X. L.; Cai, C. Z.; Lin, H. W. Facile, quick, and gram-scale synthesis of ultralong-lifetime room-temperature-phosphorescent carbon dots by microwave irradiation. Angew. Chem., Int. Ed. 2018, 57, 6216–6220.

[41]

Li, W.; Zhang, Z. H.; Kong, B.; Feng, S. S.; Wang, J. X.; Wang, L. Z.; Yang, J. P.; Zhang, F.; Wu, P. Y.; Zhao, D. Y. Simple and green synthesis of nitrogen-doped photoluminescent carbonaceous nanospheres for bioimaging. Angew. Chem., Int. Ed. 2013, 52, 8151–8155.

[42]

Jiang, K.; Sun, S.; Zhang, L.; Lu, Y.; Wu, A. G.; Cai, C. Z.; Lin, H. W. Red, green, and blue luminescence by carbon dots: Full-color emission tuning and multicolor cellular imaging. Angew. Chem., Int. Ed. 2015, 54, 5360–5363.

[43]

Liu, M. L.; Chen, B. B.; Li, C. M.; Huang, C. Z. Carbon dots: Synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chem. 2019, 21, 449–471.

[44]

Yang, P.; Zhu, Z. Q.; Zhang, T.; Chen, M. Z.; Cao, Y. Z.; Zhang, W.; Wang, X.; Zhou, X. Y.; Chen, W. M. Facile synthesis and photoluminescence mechanism of green emitting xylose-derived carbon dots for anti-counterfeit printing. Carbon 2019, 146, 636–649.

[45]

Zheng, B. Z.; Liu, T.; Paau, M. C.; Wang, M. N.; Liu, Y.; Liu, L. Z.; Wu, C. F.; Du, J.; Xiao, D.; Choi, M. M. F. One pot selective synthesis of water and organic soluble carbon dots with green fluorescence emission. RSC Adv. 2015, 5, 11667–11675.

[46]

Eda, G.; Lin, Y. Y.; Mattevi, C.; Yamaguchi, H.; Chen, H. A.; Chen, I. S.; Chen, C. W.; Chhowalla, M. Blue photoluminescence from chemically derived graphene oxide. Adv. Mater. 2010, 22, 505–509.

[47]

Lei, Y. X.; Yang, J. F.; Dai, W. B.; Lan, Y. S.; Yang, J. H.; Zheng, X. Y.; Shi, J. B.; Tong, B.; Cai, Z. X.; Dong, Y. P. Efficient and organic host-guest room-temperature phosphorescence: Tunable triplet-singlet crossing and theoretical calculations for molecular packing. Chem. Sci. 2021, 12, 6518–6525.

[48]

Du, Y. Q.; Bai, T.; Yan, H. X.; Zhao, Y.; Feng, W. X.; Li, W. Q. A simple and convenient route to synthesize novel hyperbranched poly(amine ester) with multicolored fluorescence. Polymer 2019, 185, 121771.

[49]

Zhou, Q.; Cao, B. Y.; Zhu, C. X.; Xu, S.; Gong, Y. Y.; Yuan, W. Z.; Zhang, Y. M. Clustering-triggered emission of nonconjugated polyacrylonitrile. Small 2016, 12, 6586–6592.

[50]

Zheng, S. Y.; Zhu, T. W.; Wang, Y. Z.; Yang, T. J.; Yuan, W. Z. Accessing tunable afterglows from highly twisted nonaromatic organic AIEgens via effective through-space conjugation. Angew. Chem., Int. Ed. 2020, 59, 10018–10022.

[51]

Zhou, Q.; Wang, Z. Y.; Dou, X. Y.; Wang, Y. Z.; Liu, S. E.; Zhang, Y. M.; Yuan, W. Z. Emission mechanism understanding and tunable persistent room temperature phosphorescence of amorphous nonaromatic polymers. Mater. Chem. Front. 2019, 3, 257–264.

[52]

Zhang, H. K.; Zhao, Z.; McGonigal, P. R.; Ye, R. Q.; Liu, S. J.; Lam, J. W. Y.; Kwok, R. T. K.; Yuan, W. Z.; Xie, J. P.; Rogach, A. L. et al. Clusterization-triggered emission: Uncommon luminescence from common materials. Mater. Today 2020, 32, 275–292.

[53]

Zhou, Q.; Yang, T. J.; Zhong, Z. H.; Kausar, F.; Wang, Z. Y.; Zhang, Y. M.; Yuan, W. Z. A clustering-triggered emission strategy for tunable multicolor persistent phosphorescence. Chem. Sci. 2020, 11, 2926–2933.

[54]

Zhang, H. K.; Tang, B. Z. Through-space interactions in clusteroluminescence. JACS Au 2021, 1, 1805–1814.

[55]

Tang, S. X.; Yang, T. J.; Zhao, Z. H.; Zhu, T. W.; Zhang, Q.; Hou, W. B. W.; Yuan, W. Z. Nonconventional luminophores: Characteristics, advancements and perspectives. Chem. Soc. Rev. 2021, 50, 12616–12655.

[56]

Tang, S. X.; Zhao, Z. H.; Chen, J. Q.; Yang, T. J.; Wang, Y. Z.; Chen, X. H.; Lv, M.; Yuan, W. Z. Unprecedented and readily tunable photoluminescence from aliphatic quaternary ammonium salts. Angew. Chem., Int. Ed. 2022, 61, e202117368.

[57]

Chu, B.; Zhang, H. K.; Chen, K. L.; Liu, B.; Yu, Q. L.; Zhang, C. J.; Sun, J. Z.; Yang, Q.; Zhang, X. H.; Tang, B. Z. Aliphatic polyesters with white-light clusteroluminescence. J. Am. Chem. Soc. 2022, 144, 15286–15294.

[58]

Wang, C.; Chen, Y. Y.; Hu, T. T.; Chang, Y.; Ran, G. X.; Wang, M.; Song, Q. J. Color tunable room temperature phosphorescent carbon dot based nanocomposites obtainable from multiple carbon sources via a molten salt method. Nanoscale 2019, 11, 11967–11974.

[59]

Shi, H. X.; Niu, Z. J.; Wang, H.; Ye, W. P.; Xi, K.; Huang, X.; Wang, H. L.; Liu, Y. F.; Lin, H. W.; Shi, H. F. et al. Endowing matrix-free carbon dots with color-tunable ultralong phosphorescence by self-doping. Chem. Sci. 2022, 13, 4406–4412.

[60]

Jiang, K.; Hu, S. Z.; Wang, Y. C.; Li, Z. J.; Lin, H. W. Photo-stimulated polychromatic room temperature phosphorescence of carbon dots. Small 2020, 16, 2001909.

[61]

Wang, H.; Shi, H. F.; Ye, W. P.; Yao, X. K.; Wang, Q.; Dong, C. M.; Jia, W. Y.; Ma, H. L.; Cai, S. Z.; Huang, K. W. et al. Amorphous ionic polymers with color-tunable ultralong organic phosphorescence. Angew. Chem., Int. Ed. 2019, 58, 18776–18782.

Nano Research
Pages 7761-7769
Cite this article:
Wen J, Zeng Z, Wang B, et al. Modulating hydrothermal condition to achieve carbon dots-zeolite composites with multicolor afterglow. Nano Research, 2023, 16(5): 7761-7769. https://doi.org/10.1007/s12274-023-5410-y
Topics:

12167

Views

16

Crossref

16

Web of Science

16

Scopus

0

CSCD

Altmetrics

Received: 19 October 2022
Revised: 12 December 2022
Accepted: 15 December 2022
Published: 21 January 2023
© Tsinghua University Press 2023
Return