Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Nanocellulose harvested from biomass has attractive properties that have promoted research on its practical applications. Herein, we investigated nanocellulose-based porous monoliths with oriented microchannels that can be fabricated via a unidirectional freezing method. In this method, water-dispersed cellulose nanofibers (CNFs) were immersed into a cold source at a controlled speed, followed by subsequent freeze-drying. The structure of porous cellulose monoliths mainly depends on two factors: the freezing conditions and properties of the dispersed CNFs. The former has been investigated previously. However, the effects of the latter remain unclear. In this study, CNF suspensions prepared by 2,2,6,6-tetramethylpiperidine-1-oxyl-mediated oxidation cellulose nanofibers (TOCNs) with different aspect ratios and concentrations were used. The effects of these variables on the resulting structure, including the pore shape, size, and wall thickness, were examined. Based on the results, the impact of TOCNs on the structure of porous cellulose monoliths was investigated. Our findings suggested that depending on their structure, the porous cellulose monoliths exhibit different mechanical strengths and mass transport properties. In particular, porous cellulose monoliths synthesized from 5.1 wt.% short TOCNs exhibited a low density (55.9 mg∙cm−3), high mechanical strength (8687 kPa), and fast mass transport.
Lavoine, N.; Bergström, L. Nanocellulose-based foams and aerogels: Processing, properties, and applications. J. Mater. Chem. A 2017, 5, 16105–16117.
Li, T.; Chen, C. J.; Brozena, A. H.; Zhu, J. Y.; Xu, L. X.; Driemeier, C.; Dai, J. Q.; Rojas, O. J.; Isogai, A.; Wågberg, L. et al. Developing fibrillated cellulose as a sustainable technological material. Nature 2021, 590, 47–56.
Lavoine, N.; Desloges, I.; Dufresne, A.; Bras, J. Microfibrillated cellulose—Its barrier properties and applications in cellulosic materials: A review. Carbohydr. Polym. 2012, 90, 735–764.
Fei, Y.; Liang, M.; Yan, L. W.; Chen, Y.; Zou, H. W. Co/C@cellulose nanofiber aerogel derived from metal-organic frameworks for highly efficient electromagnetic interference shielding. Chem. Eng. J. 2020, 392, 124815.
Wei, J. Y.; Geng, S. Y.; Hedlund, J.; Oksman, K. Lightweight, flexible, and multifunctional anisotropic nanocellulose-based aerogels for CO2 adsorption. Cellulose 2020, 27, 2695–2707.
Saito, T.; Kuramae, R.; Wohlert, J.; Berglund, L. A.; Isogai, A. An ultrastrong nanofibrillar biomaterial: The strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules 2013, 14, 248–253.
Saito, T.; Kimura, S.; Nishiyama, Y.; Isogai, A. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 2007, 8, 2485–2491.
Isogai, A.; Saito, T.; Fukuzumi, H. TEMPO-oxidized cellulose nanofibers. Nanoscale 2011, 3, 71–85.
Mahler, W.; Bechtold, M. F. Freeze-formed silica fibres. Nature 1980, 285, 27–28.
Fukasawa, T.; Deng, Z. Y.; Ando, M.; Ohji, T.; Kanzaki, S. Synthesis of porous silicon nitride with unidirectionally aligned channels using freeze-drying process. J. Am. Ceram. Soc. 2002, 85, 2151–2155.
Mukai, S. R.; Nishihara, H.; Tamon, H. Formation of monolithic silica gel microhoneycombs (SMHs) using pseudosteady state growth of microstructural ice crystals. Chem. Commun. 2004, 874–875.
Nishihara, H.; Mukai, S. R.; Yamashita, D.; Tamon, H. Ordered macroporous silica by ice templating. Chem. Mater. 2005, 17, 683–689.
Deville, S.; Saiz, E.; Nalla, R. K.; Tomsia, A. P. Freezing as a path to build complex composites. Science 2006, 311, 515–518.
Shao, G. F.; Hanaor, D. A. H.; Shen, X. D.; Gurlo, A. Freeze casting: From low-dimensional building blocks to aligned porous structures-a review of novel materials, methods, and applications. Adv. Mater. 2020, 32, 1907176.
Zhang, H. F.; Hussain, I.; Brust, M.; Butler, M. F.; Rannard, S. P.; Cooper, A. I. Aligned two- and three-dimensional structures by directional freezing of polymers and nanoparticles. Nat. Mater. 2005, 4, 787–793.
Pan, Z. Z.; Lv, W.; Yang, Q. H.; Nishihara, H. Aligned macroporous monoliths by ice-templating. Bull. Chem. Soc. Japan 2022, 95, 611–620.
Mukai, S. R.; Nishihara, H.; Yoshida, T.; Taniguchi, K. I.; Tamon. H. Morphology of resorcinol-formaldehyde gels obtained through ice-templating. Carbon 2005, 43, 1563–1565.
Deville, S.; Saiz, E.; Tomsia, A. P. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials 2006, 27, 5480–5489.
Deville, S.; Saiz, E.; Tomsia, A. P. Ice-templated porous alumina structures. Acta Mater. 2007, 55, 1965–1974.
Deville, S. Freeze-casting of porous ceramics: A review of current achievements and issues. Adv. Eng. Mater. 2008, 10, 155–169.
Nishihara, H.; Iwamura, S.; Kyotani, T. Synthesis of silica-based porous monoliths with straight nanochannels using an ice-rod nanoarray as a template. J. Mater. Chem. 2008, 18, 3662–3670.
Deville, S.; Maire, E.; Bernard-Granger, G.; Lasalle, A.; Bogner, A.; Gauthier, C.; Leloup, J.; Guizard, C. Metastable and unstable cellular solidification of colloidal suspensions. Nat. Mater. 2009, 8, 966–972.
Chau, M.; De France, K. J.; Kopera, B.; Machado, V. R.; Rosenfeldt, S.; Reyes, L.; Chan, K. J. W.; Förster, S.; Cranston, E. D.; Hoare, T. et al. Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chem. Mater. 2016, 28, 3406–3415.
Jaafar, Z.; Quelennec, B.; Moreau, C.; Lourdin, D.; Maigret, J. E.; Pontoire, B.; D’Orlando, A.; Coradin, T.; Duchemin, B.; Fernandes, F. M. et al. Plant cell wall inspired xyloglucan/cellulose nanocrystals aerogels produced by freeze-casting. Carbohydr. Polym. 2020, 247, 116642.
Bai, H.; Chen, Y.; Delattre, B.; Tomsia, A. P.; Ritchie, R. O. Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Sci. Adv. 2015, 1, e1500849.
Wang, C. H.; Chen, X.; Wang, B.; Huang, M.; Wang, B.; Jiang, Y.; Ruoff, R. S. Freeze-casting produces a graphene oxide aerogel with a radial and centrosymmetric structure. ACS Nano 2018, 12, 5816–5825.
Pan, Z. Z.; Nishihara, H.; Iwamura, S.; Sekiguchi, T.; Sato, A.; Isogai, A.; Kang, F. Y.; Kyotani, T.; Yang, Q. H. Cellulose nanofiber as a distinct structure-directing agent for xylem-like microhoneycomb monoliths by unidirectional freeze-drying. ACS Nano 2016, 10, 10689–10697.
Lee, J.; Deng, Y. L. The morphology and mechanical properties of layer structured cellulose microfibril foams from ice-templating methods. Soft Matter 2011, 7, 6034–6040.
Munier, P.; Gordeyeva, K.; Bergström, L.; Fall, A. B. Directional freezing of nanocellulose dispersions aligns the rod-like particles and produces low-density and robust particle networks. Biomacromolecules 2016, 17, 1875–1881.
Chen, Y. M.; Zhou, L. J.; Chen, L.; Duan, G. G.; Mei, C. T.; Huang, C. B.; Han, J. Q.; Jiang, S. H. Anisotropic nanocellulose aerogels with ordered structures fabricated by directional freeze-drying for fast liquid transport. Cellulose 2019, 26, 6653–6667.
Han, J. Q.; Zhou, C. J.; Wu, Y. Q.; Liu, F. Y.; Wu, Q. L. Self-assembling behavior of cellulose nanoparticles during freeze-drying: Effect of suspension concentration, particle size, crystal structure, and surface charge. Biomacromolecules 2013, 14, 1529–1540.
Wicklein, B.; Kocjan, A.; Salazar-Alvarez, G.; Carosio, F.; Camino, G.; Antonietti, M.; Bergström, L. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat. Nanotechnol. 2015, 10, 277–283.
Pan, Z. Z.; Govedarica, A.; Nishihara, H.; Tang, R.; Wang, C.; Luo, Y.; Lv, W.; Kang, F. Y.; Trifkovic, M.; Yang, Q. H. pH-dependent morphology control of cellulose nanofiber/graphene oxide cryogels. Small 2021, 17, 2005564.
Wang, C.; Pan, Z. Z.; Lv, W.; Liu, B. L.; Wei, J.; Lv, X. H.; Luo, Y.; Nishihara, H.; Yang, Q. H. A directional strain sensor based on anisotropic microhoneycomb cellulose nanofiber-carbon nanotube hybrid aerogels prepared by unidirectional freeze drying. Small 2019, 15, 1805363.
Han, X. H.; Ding, S. Q.; Fan, L. W.; Zhou, Y. H.; Wang, S. R. Janus biocomposite aerogels constituted of cellulose nanofibrils and MXenes for application as single-module solar-driven interfacial evaporators. J. Mater. Chem. A 2021, 9, 18614–18622.
Martoïa, F.; Cochereau, T.; Dumont, P. J. J.; Orgéas, L.; Terrien, M.; Belgacem, M. N. Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Mater. Des. 2016, 104, 376–391.
Sehaqui, H.; Salajková, M.; Zhou, Q.; Berglund, L. A. Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions. Soft Matter 2010, 6, 1824–1832.
Ali, Z. M.; Gibson, L. J. The structure and mechanics of nanofibrillar cellulose foams. Soft Matter 2013, 9, 1580–1588.
Zhang, S. Y.; Sun, J.; Hu, D.; Xiao, C.; Zhuo, Q. Q.; Wang, J. J.; Qin, C. X.; Dai, L. X. Large-sized graphene oxide/modified tourmaline nanoparticle aerogel with stable honeycomb-like structure for high-efficiency PM2.5 capture. J. Mater. Chem. A 2018, 6, 16139–16148.
Zeng, Z. H.; Ma, X. Y. D.; Zhang, Y. F.; Wang, Z.; Ng, B. F.; Wan, M. P.; Lu, X. H. Robust lignin-based aerogel filters: High-efficiency capture of ultrafine airborne particulates and the mechanism. ACS Sustainable Chem. Eng. 2019, 7, 6959–6968.
Chen, C. J.; Kuang, Y. D.; Hu, L. B. Challenges and opportunities for solar evaporation. Joule 2019, 3, 683–718.