Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The redox property of the ultrasmall coinage nanoclusters (with several to tens of Au/Ag atoms) has elucidated the electron-transfer capacity of nanoclusters, and has been successfully utilized in a variety of redox conversions (such as from CO2 to CO). Nevertheless, their biological applications are mainly restricted by the scarcity of atomically precise, water-soluble metal nanoclusters, and the limited application (mainly on the decomposition of H2O2 in these days). Herein, mercaptosuccinic acid (MSA) protected ultrasmall alloy AuAg nanoclusters were prepared, and the main product was determined [Au3Ag5(MSA)3]− by electrospray ionization mass spectrometry (ESI-MS). The clusters can not only mediate the decomposition of H2O2 to generate hydroxyl radicals, but is also able to mediate the reduction of nicotinamide adenine dinucleotide (NAD) to its reduced form of NADH. This is the first time that the atomically precise metal nanoclusters were used to mediate the coenzyme reduction. The preliminary mechanistic insights imply the reaction to be driven by the hydrogen bonding between the carboxylic groups (on the surface of MSA) and the amino N–H bonds (on NAD). In this context, the presence of the carboxylic groups, the sub-nanometer size regime (~ 1 nm), and the synergistic effect of the Au-Ag clusters are pre-requisite to the NAD reduction.
Yang, J.; Jin, R. C. New advances in atomically precise silver nanoclusters. ACS Mater. Lett. 2019, 1, 482–489.
Kang, X.; Li, Y. W.; Zhu, M. Z.; Jin, R. C. Atomically precise alloy nanoclusters: Syntheses, structures, and properties. Chem. Soc. Rev. 2020, 49, 6443–6514.
Nasaruddin, R. R.; Chen, T. K.; Yan, N.; Xie, J. P. Roles of thiolate ligands in the synthesis, properties and catalytic application of gold nanoclusters. Coord. Chem. Rev. 2018, 368, 60–79.
Du, Y. X.; Sheng, H. T.; Astruc, D.; Zhu, M. Z. Atomically precise noble metal nanoclusters as efficient catalysts: A bridge between structure and properties. Chem. Rev. 2020, 120, 526–622.
Li, G.; Jin, R. C. Atomically precise gold nanoclusters as new model catalysts. Acc. Chem. Res. 2013, 46, 1749–1758.
Li, G.; Abroshan, H.; Chen, Y. X.; Jin, R. C.; Kim, H. J. Experimental and mechanistic understanding of aldehyde hydrogenation using Au25 nanoclusters with Lewis acids: Unique sites for catalytic reactions. J. Am. Chem. Soc. 2015, 137, 14295–304.
Zhuang, S. L.; Chen, D.; Liao, L. W.; Zhao, Y.; Xia, N.; Zhang, W. H.; Wang, C. M.; Yang, J.; Wu, Z. K. Hard-sphere random close-packed Au47Cd2(TBBT)31 nanoclusters with a Faradaic efficiency of up to 96% for electrocatalytic CO2 reduction to CO. Angew. Chem., Int. Ed. 2020, 59, 3073–3077.
Sun, Y. N.; Liu, X.; Xiao, K.; Zhu, Y.; Chen, M. Y. Active-site tailoring of gold cluster catalysts for electrochemical CO2 reduction. ACS Catal. 2021, 11, 11551–11560.
Yuan, S. F.; Guan, Z. J.; Wang, Q. M. Identification of the active species in bimetallic cluster catalyzed hydrogenation. J. Am. Chem. Soc. 2022, 144, 11405–11412.
Shivhare, A.; Ambrose, S. J.; Zhang, H. X.; Purves, R. W.; Scott, R. W. J. Stable and recyclable Au25 clusters for the reduction of 4-nitrophenol. Chem. Commun. 2013, 49, 276–278.
Chong, H. B.; Li, P.; Wang, S. X.; Fu, F. Y.; Xiang, J.; Zhu, M. Z.; Li, Y. D. Au25 clusters as electron-transfer catalysts induced the intramolecular cascade reaction of 2-nitrobenzonitrile. Sci. Rep. 2013, 3, 3214.
Li, X.; Takano, S.; Tsukuda, T. Ligand effects on the hydrogen evolution reaction catalyzed by Au13 and Pt@Au12: Alkynyl vs thiolate. J. Phys. Chem. C 2021, 125, 23226–23230.
Pollitt, S.; Truttmann, V.; Haunold, T.; Garcia, C.; Olszewski, W.; Llorca, J.; Barrabés, N.; Rupprechter, G. The dynamic structure of Au38(SR)24 nanoclusters supported on CeO2 upon pretreatment and CO oxidation. ACS Catal. 2020, 10, 6144–6148.
Sarkar, B.; Prajapati, P.; Tiwari, R.; Tiwari, R.; Ghosh, S.; Shubhra Acharyya, S.; Pendem, C.; Kumar Singha, R.; Sivakumar Konathala, L. N.; Kumar, J. et al. Room temperature selective oxidation of cyclohexane over Cu-nanoclusters supported on nanocrystalline Cr2O3. Green Chem. 2012, 14, 2600–2606.
Kaizuka, K.; Miyamura, H.; Kobayashi, S. Remarkable effect of bimetallic nanocluster catalysts for aerobic oxidation of alcohols: Combining metals changes the activities and the reaction pathways to aldehydes/carboxylic acids or esters. J. Am. Chem. Soc. 2010, 132, 15096–15098.
Shang, L.; Xu, J.; Nienhaus, G. U. Recent advances in synthesizing metal nanocluster-based nanocomposites for application in sensing, imaging and catalysis. Nano Today 2019, 28, 100767.
Peng, Y. W.; Gao, L.; Pidamaimaiti, G.; Zhao, D.; Zhang, L. M.; Yin, G. W.; Wang, F. Facile construction of highly luminescent and biocompatible gold nanoclusters by shell rigidification for two-photon pH-edited cytoplasmic and in vivo imaging. Nanoscale 2022, 14, 8342–8348.
Yu, M. X.; Zhou, C.; Liu, J. B.; Hankins, J. D.; Zheng, J. Luminescent gold nanoparticles with pH-dependent membrane adsorption. J. Am. Chem. Soc. 2011, 133, 11014–11017.
Yahia-Ammar, A.; Sierra, D.; Mérola, F.; Hildebrandt, N.; Guével, X, L. Self-assembled gold nanoclusters for bright fluorescence imaging and enhanced drug delivery. ACS Nano 2016, 10, 2591–2599.
Zhao, Y.; Zhuang, S. L.; Liao, L. W.; Wang, C. M.; Xia, N.; Gan, Z. B.; Gu, W. M.; Li, J.; Deng, H. T.; Wu, Z. K. A dual purpose strategy to endow gold nanoclusters with both catalysis activity and water solubility. J. Am. Chem. Soc. 2020, 142, 973–977.
Hu, L. Z.; Yuan, Y. L.; Zhang, L.; Zhao, J. M.; Majeed, S.; Xu, G. B. Copper nanoclusters as peroxidase mimetics and their applications to H2O2 and glucose detection. Anal. Chim. Acta 2013, 762, 83–86.
Zhang, C. X.; Gao, Y. C.; Li, H. W.; Wu, Y. Q. Gold-platinum bimetallic nanoclusters for oxidase-like catalysis. ACS Appl. Nano Mater. 2020, 3, 9318–9328.
Xu, J.; Sun, F. Y.; Li, Q.; Yuan, H. X.; Ma, F. Y.; Wen, D.; Shang, L. Ultrasmall gold nanoclusters-enabled fabrication of ultrafine gold aerogels as novel self-supported nanozymes. Small 2022, 18, 2200525.
Hong, C. Y.; Chen, L. L.; Wu, C. Y.; Yang, D.; Dai, J. Y.; Huang, Z. Y.; Cai, R.; Tan, W. H. Green synthesis of Au@WSe2 hybrid nanostructures with the enhanced peroxidase-like activity for sensitive colorimetric detection of glucose. Nano Res. 2022, 15, 1587–1592.
Hong, C. Y.; Zhang, X. X.; Wu, C. Y.; Chen, Q.; Yang, H. F.; Yang, D.; Huang, Z. Y.; Cai, R.; Tan, W. H. On-site colorimetric detection of cholesterol based on polypyrrole nanoparticles. ACS. Appl. Mater. Interfaces 2020, 12, 54426–54432.
Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J. Chem. Soc. Chem. Commun. 1994, 801–802.
Nataraju, B.; Kalenius, E.; Udayabhaskararao, T.; Pradeep, T.; Siegenthaler, H.; Wandlowski, T. Phase transfer induced enhanced stability of monolayer protected silver quantum clusters. J. Clust. Sci. 2018, 29, 41–48.
Yao, Q. F.; Fung, V.; Sun, C.; Huang, S. D.; Chen, T. K.; Jiang, D. E.; Lee, J. Y.; Xie, J. P. Revealing isoelectronic size conversion dynamics of metal nanoclusters by a noncrystallization approach. Nat. Commun. 2018, 9, 1979.
Dass, A.; Sakthivel, N. A.; Jupally, V. R.; Kumara, C.; Rambukwella, M. Plasmonic nanomolecules: Electrochemical resolution of 22 electronic states in Au329(SR)84. ACS Energy Lett. 2020, 5, 207–214.
Liu, Y.; Liu, H. Y.; Hu, N. F. Core–shell nanocluster films of hemoglobin and clay nanoparticle: Direct electrochemistry and electrocatalysis. Biophys. Chem. 2005, 117, 27–37.
Liu, Z.; Zhu, M. Z.; Meng, X. M.; Xu, G. Y.; Jin, R. C. Electron transfer between [Au25(SC2H4Ph)18]−TOA+ and oxoammonium cations. J. Phys. Chem. Lett. 2011, 2, 2104–2109.
Zhu, H. G.; Wang, S. S.; Wang, Y. R.; Song, C. W.; Yao, Q. F.; Yuan, X.; Xie, J. P. Gold nanocluster with AIE: A novel photodynamic antibacterial and deodorant molecule. Biomaterials 2022, 288, 121695.
Zhang, X.; Yang, Q.; Lang, Y. H.; Jiang, X.; Wu, P. Rationale of 3,3',5,5'-tetramethylbenzidine as the chromogenic substrate in colorimetric analysis. Anal. Chem. 2020, 92, 12400–12406.
Misono, Y.; Ohkata, Y.; Morikawa, T.; Itoh, K. Resonance Raman and absorption spectroscopic studies on the electrochemical oxidation processes of 3,3',5,5'-tetramethylbenzidine. J. Electroanal. Chem. 1997, 436, 203–212.
Westbrook, R. L.; Bridges, E.; Roberts, J.; Escribano-Gonzalez, C.; Eales, K. L.; Vettore, L. A.; Walker, P. D.; Vera-Siguenza, E.; Rana, H.; Cuozzo, F. et al. Proline synthesis through PYCR1 is required to support cancer cell proliferation and survival in oxygen-limiting conditions. Cell Rep. 2022, 38, 110320.
Buszewicz, G.; Madro, R. In vitro co-metabolism of ethanol and cyclic ketones. Toxicology 2002, 177, 207–213.
Kim, S. H.; Chung, G. Y.; Kim, S. H.; Vinothkumar, G.; Yoon, S. H.; Jung, K. D. Electrochemical NADH regeneration and electroenzymatic CO2 reduction on Cu nanorods/glassy carbon electrode prepared by cyclic deposition. Electrochim. Acta 2016, 210, 837–845.
Kory, N.; De Bos, J. U.; Van Der Rijt, S.; Jankovic, N.; Güra, M.; Arp, N.; Pena, I. A.; Prakash, G.; Chan, S. H.; Kunchok, T. et al. MCART1/SLC25A51 is required for mitochondrial NAD transport. Sci. Adv. 2020, 6, eabe5310.
Huang, X. H.; El-Sayed, I. H.; Yi, X. B.; El-Sayed, M. A. Gold nanoparticles: Catalyst for the oxidation of NADH to NAD+. J. Photochem. Photobiol. B 2005, 81, 76–83.
Saba, T.; Burnett, J. W. H.; Li, J. W.; Kechagiopoulos, P. N.; Wang, X. D. A facile analytical method for reliable selectivity examination in cofactor NADH regeneration. Chem. Commun. 2020, 56, 1231–1234.
de Graaf, R. A.; Behar, K. L. Detection of cerebral NAD+ by in vivo 1H NMR spectroscopy. NMR Biomed. 2014, 27, 802–809.
Henriques Pereira, D. P.; Leethaus, J.; Beyazay, T.; Do Nascimento Vieira, A.; Kleinermanns, K.; Tüysüz, H.; Martin, W. F.; Preiner, M. Role of geochemical protoenzymes (geozymes) in primordial metabolism: Specific abiotic hydride transfer by metals to the biological redox cofactor NAD+. FEBS J. 2022, 289, 3148–3162.
Crilly, C. J.; Brom, J. A.; Kowalewski, M. E.; Piszkiewicz, S.; Pielak, G. J. Dried protein structure revealed at the residue level by liquid-observed vapor exchange NMR. Biochemistry 2021, 60, 152–159.
Jain, N.; Khanvilkar, A. N.; Sahoo, S.; Bedekar, A. V. Modification of Kagan’s amide for improved activity as chiral solvating agent in enantiodiscrimination during NMR analysis. Tetrahedron 2018, 74, 68–76.
Hagspiel, S.; Fantuzzi, F.; Arrowsmith, M.; Gärtner, A.; Fest, M.; Weiser, J.; Engels, B.; Helten, H.; Braunschweig, H. Modulation of the naked-eye and fluorescence color of a protonated boron-doped thiazolothiazole by anion-dependent hydrogen bonding. Chem.—Eur. J. 2022, 28, e202201398.
Charville, H.; Jackson, D. A.; Hodges, G.; Whiting, A.; Wilson, M. R. The uncatalyzed direct amide formation reaction-mechanism studies and the key role of carboxylic acid H-bonding. Eur. J. Org. Chem. 2011, 2011, 5981–5990.
Gopalan, A.; Ragupathy, D.; Kim, H. T.; Manesh, K. M.; Lee, K. P. Pd (core)-Au (shell) nanoparticles catalyzed conversion of NADH to NAD+ by UV–vis spectroscopy—A kinetic analysis. Spectrochim. Acta A 2009, 74, 678–684.
Dou, X. Y.; Yuan, X.; Yao, Q. F.; Luo, Z. T.; Zheng, K. Y.; Xie, J. P. Facile synthesis of water-soluble Au25−xAgx nanoclusters protected by mono- and bi-thiolate ligands. Chem. Commun. 2014, 50, 7459–7462.
Negishi, Y.; Takasugi, Y.; Sato, S.; Yao, H.; Kimura, K.; Tsukuda, T. Kinetic stabilization of growing gold clusters by passivation with thiolates. J. Phys. Chem. B 2006, 110, 12218–12221.
Zheng, K. Y.; Yuan, X.; Kuah, K.; Luo, Z. T.; Yao, Q. F.; Zhang, Q. B.; Xie, J. P. Boiling water synthesis of ultrastable thiolated silver nanoclusters with aggregation-induced emission. Chem. Commun. 2015, 51, 15165–15168.
Zheng, Y. K.; Wang, X. M.; Jiang, H. Label-free detection of Acinetobacter baumannii through the induced fluorescence quenching of thiolated AuAg nanoclusters. Sens. Actuators B 2018, 277, 388–393.