AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Cerium oxide nanozymes alleviate oxidative stress in tenocytes for Achilles tendinopathy healing

Xingquan Xu1,§Rongliang Wang1,§Yixuan Li1,§Rui Wu1Wenjin Yan1Sheng Zhao2Quanyi Liu3,4Yan Du3,4Wenli Gong1Weitong Li1Hui Wei2,5( )Dongquan Shi1( )
State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
University of Science and Technology of China, Hefei 230026, China
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China

§ Xingquan Xu, Rongliang Wang, and Yixuan Li contributed equally to this work.

Show Author Information

Graphical Abstract

Cerium oxide nanoparticles (CeO2 NPs) exhibited high superoxide dismutase- (SOD-) and catalase (CAT)-like activity and protected tenocytes from oxidative stress through the ERK/NRF2 pathway activation during healing process of Achilles tendinopathy.

Abstract

Background: Reactive oxygen species (ROS) is considered as ubiquitous and highly active chemicals that influence tendon integrity and orchestrate tendon repair. With significant recent advances in nanomaterials, cerium oxide nanoparticles (CeO2 NPs) exhibit superoxide dismutase- and catalase-like activities. Herein, we introduced a therapeutic approach of CeO2 NPs for Achilles tendinopathy (AT) healing. Methods: CeO2 NPs were synthesized to examine their effect as ROS scavengers on AT healing in vitro and in vivo. The mRNA levels of inflammatory factors were evaluated in AT after CeO2 NPs treatment in vitro. The mechanisms underlying CeO2 NPs-mediated stimulation of NRF2 translocation and ERK signaling were verified through immunofluorescence and Western blot analysis. The efficacy of CeO2 NPs was tested in an AT rat model in comparison with the control. Results: CeO2 NPs not only significantly scavenged multiple ROS and suppressed ROS-induced inflammatory reactions but also protected cell proliferation under oxidative stress induced by tert-butyl hydroperoxide (TBHP). Moreover, CeO2 NPs could promote NRF2 nuclear translocation for anti-oxidation and anti-inflammation through the ERK signaling pathway. In a rat model of collagenase-induced tendon injuries, CeO2 NPs showed significant therapeutic efficacy by ameliorating tendon damage. Conclusion: The present study provides valuable insights into the molecular mechanism of CeO2 NPs to ameliorate ROS in tenocytes via the ERK/NRF2 signaling pathway, which underscores the potential of CeO2 NPs for application in the treatment of enthesopathy healing.

Electronic Supplementary Material

Download File(s)
12274_2023_5416_MOESM1_ESM.pdf (404.6 KB)

References

[1]

De Jonge, S.; Van Den Berg, C.; De Vos, R. J.; Van Der Heide, H. J. L.; Weir, A.; Verhaar, J. A. N.; Bierma-Zeinstra, S. M. A.; Tol, J. L. Incidence of midportion Achilles tendinopathy in the general population. Br. J. Sports Med. 2011, 45, 1026–1028.

[2]

Magnusson, S. P.; Langberg, H.; Kjaer, M. The pathogenesis of tendinopathy: Balancing the response to loading. Nat. Rev. Rheumatol. 2010, 6, 262–268.

[3]

Vo, T. P.; Ho, G. W. K.; Andrea, J. Achilles tendinopathy, a brief review and update of current literature. Curr. Sports Med. Rep. 2021, 20, 453–461.

[4]

Murrell, G. A. C. Oxygen free radicals and tendon healing. J. Shoulder Elbow Surg. 2007, 16, S208–S214.

[5]

Millar, N. L.; Murrell, G. A. C.; McInnes, I. B. Alarmins in tendinopathy: Unravelling new mechanisms in a common disease. Rheumatology (Oxford). 2013, 52, 769–779.

[6]

Bestwick, C. S.; Maffulli, N. Reactive oxygen species and tendinopathy: Do they matter? Br. J. Sports Med. 2004, 38, 672–674.

[7]

Millar, N. L.; Murrell, G. A. C.; McInnes, I. B. Inflammatory mechanisms in tendinopathy—towards translation. Nat. Rev. Rheumatol. 2017, 13, 110–122.

[8]

Li, X. Y.; Fang, P.; Mai, J.; Choi, E. T.; Wang, H.; Yang, X. F. Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J. Hematol. Oncol. 2013, 6, 19.

[9]

Yao, J.; Cheng, Y.; Zhou, M.; Zhao, S.; Lin, S. C.; Wang, X. Y.; Wu, J. J. X.; Li, S. R.; Wei, H. ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation. Chem. Sci. 2018, 9, 2927–2933.

[10]

Korsvik, C.; Patil, S.; Seal, S.; Self, W. T. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun. 2007, 1056–1058.

[11]

Zhao, S.; Li, Y. X.; Liu, Q. Y.; Li, S. R.; Cheng, Y.; Cheng, C. Q.; Sun, Z. Y.; Du, Y.; Butch, C. J.; Wei, H. An orally administered CeO2@montmorillonite nanozyme targets inflammation for inflammatory bowel disease therapy. Adv. Funct. Mater. 2020, 30, 2004692.

[12]

Yu, Y. J.; Zhao, S.; Gu, D. A.; Zhu, B. J.; Liu, H. X.; Wu, W. L.; Wu, J. J. X.; Wei, H.; Miao, L. Y. Cerium oxide nanozyme attenuates periodontal bone destruction by inhibiting the ROS-NF κB pathway. Nanoscale 2022, 14, 2628–2637.

[13]

Lin, A. Q.; Liu, Q. Y.; Zhang, Y. H.; Wang, Q.; Li, S. R.; Zhu, B. J.; Miao, L. Y.; Du, Y.; Zhao, S.; Wei, H. A dopamine-enabled universal assay for catalase and catalase-like nanozymes. Anal. Chem. 2022, 94, 10636–10642.

[14]

Farías, G. G.; Guardia, C. M.; Britt, D. J.; Guo, X. L.; Bonifacino, J. S. Sorting of dendritic and axonal vesicles at the pre-axonal exclusion zone. Cell Rep. 2015, 13, 1221–1232.

[15]

Rizvi, F.; Shukla, S.; Kakkar, P. Essential role of pH domain and leucine-rich repeat protein phosphatase 2 in Nrf2 suppression via modulation of Akt/GSK3β/Fyn kinase axis during oxidative hepatocellular toxicity. Cell Death Dis. 2014, 5, e1153.

[16]

Millar, N. L.; Silbernagel, K. G.; Thorborg, K.; Kirwan, P. D.; Galatz, L. M.; Abrams, G. D.; Murrell, G. A. C.; McInnes, I. B.; Rodeo, S. A. Tendinopathy. Nat. Rev. Dis. Primers 2021, 7, 1.

[17]

Challoumas, D.; Biddle, M.; Millar, N. L. Recent advances in tendinopathy. Fac. Rev. 2020, 9, 16.

[18]

Riley, G. Chronic tendon pathology: Molecular basis and therapeutic implications. Expert Rev. Mol. Med. 2005, 7, 1–25.

[19]

D'Addona, A.; Maffulli, N.; Formisano, S.; Rosa, D. Inflammation in tendinopathy. Surgeon 2017, 15, 297–302.

[20]

Zhang, X. Y.; Eliasberg, C. D.; Rodeo, S. A. Mitochondrial dysfunction and potential mitochondrial protectant treatments in tendinopathy. Ann. N Y Acad. Sci. 2021, 1490, 29–41.

[21]

Liu, Y. C.; Wang, H. L.; Huang, Y. Z.; Weng, Y. H.; Chen, R. S.; Tsai, W. C.; Yeh, T. H.; Lu, C. S.; Chen, Y. L.; Lin, Y. W. et al. Alda-1, an activator of ALDH2, ameliorates Achilles tendinopathy in cellular and mouse models. Biochem. Pharmacol. 2020, 175, 113919.

[22]

Lee, J. M.; Hwang, J. W.; Kim, M. J.; Jung, S. Y.; Kim, K. S.; Ahn, E. H.; Min, K.; Choi, Y. S. Mitochondrial transplantation modulates inflammation and apoptosis, alleviating tendinopathy both in vivo and in vitro. Antioxidants (Basel) 2021, 10, 696.

[23]

Li, K. Q.; Deng, G. M.; Deng, Y.; Chen, S. W.; Wu, H. T.; Cheng, C. Y.; Zhang, X. R.; Yu, B.; Zhang, K. R. High cholesterol inhibits tendon-related gene expressions in tendon-derived stem cells through reactive oxygen species-activated nuclear factor-κB signaling. J. Cell. Physiol. 2019, 234, 18017–18028.

[24]

Kucukler, S.; Benzer, F.; Yildirim, S.; Gur, C.; Kandemir, F. M.; Bengu, A. S.; Ayna, A.; Caglayan, C.; Dortbudak, M. B. Protective effects of chrysin against oxidative stress and inflammation induced by lead acetate in rat kidneys: A biochemical and histopathological approach. Biol. Trace Elem. Res. 2021, 199, 1501–1514.

[25]

Yardım, A.; Kandemir, F. M.; Çomaklı, S.; Özdemir, S.; Caglayan, C.; Kucukler, S.; Çelik, H. Protective effects of curcumin against paclitaxel-induced spinal cord and sciatic nerve injuries in rats. Neurochem. Res. 2021, 46, 379–395.

[26]

Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.

[27]

Szymanski, C. J.; Munusamy, P.; Mihai, C.; Xie, Y. M.; Hu, D. H.; Gilles, M. K.; Tyliszczak, T.; Thevuthasan, S.; Baer, D. R.; Orr, G. Shifts in oxidation states of cerium oxide nanoparticles detected inside intact hydrated cells and organelles. Biomaterials 2015, 62, 147–154.

[28]

Kwon, H. J.; Kim, D.; Seo, K.; Kim, Y. G.; Han, S. I.; Kang, T.; Soh, M.; Hyeon, T. Ceria nanoparticle systems for selective scavenging of mitochondrial, intracellular, and extracellular reactive oxygen species in Parkinson’s disease. Angew. Chem., Int. Ed. 2018, 57, 9408–9412.

[29]

Bao, Q. Q.; Hu, P.; Xu, Y. Y.; Cheng, T. S.; Wei, C. Y.; Pan, L. M.; Shi, J. L. Simultaneous blood-brain barrier crossing and protection for stroke treatment based on edaravone-loaded ceria nanoparticles. ACS Nano 2018, 12, 6794–6805.

[30]

Son, D.; Lee, J.; Lee, D. J.; Ghaffari, R.; Yun, S. M.; Kim, S. J.; Lee, J. E.; Cho, H. R.; Yoon, S.; Yang, S. et al. Bioresorbable electronic stent integrated with therapeutic nanoparticles for endovascular diseases. ACS Nano 2015, 9, 5937–5946.

[31]

Kim, J.; Hong, G.; Mazaleuskaya, L.; Hsu, J. C.; Rosario-Berrios, D. N.; Grosser, T.; Cho-Park, P. F.; Cormode, D. P. Ultrasmall antioxidant cerium oxide nanoparticles for regulation of acute inflammation. ACS Appl. Mater. Interfaces 2021, 13, 60852–60864.

[32]

Adebayo, O. A.; Akinloye, O.; Adaramoye, O. A. Cerium oxide nanoparticles attenuate oxidative stress and inflammation in the liver of diethylnitrosamine-treated mice. Biol. Trace Elem. Res. 2020, 193, 214–225.

[33]

Soh, M.; Kang, D. W.; Jeong, H. G.; Kim, D.; Kim, D. Y.; Yang, W.; Song, C.; Baik, S.; Choi, I. Y.; Ki, S. K. et al. Ceria-zirconia nanoparticles as an enhanced multi-antioxidant for sepsis treatment. Angew. Chem., Int. Ed. 2017, 56, 11399–11403.

[34]

Wang, P.; Geng, J.; Gao, J. H.; Zhao, H.; Li, J. H.; Shi, Y. R.; Yang, B. Y.; Xiao, C.; Linghu, Y. Y.; Sun, X. F. et al. Macrophage achieves self-protection against oxidative stress-induced ageing through the Mst-Nrf2 axis. Nat. Commun. 2019, 10, 755.

[35]

Tohidnezhad, M.; Varoga, D.; Wruck, C. J.; Brandenburg, L. O.; Seekamp, A.; Shakibaei, M.; Sönmez, T. T.; Pufe, T.; Lippross, S. Platelet-released growth factors can accelerate tenocyte proliferation and activate the anti-oxidant response element. Histochem. Cell Biol. 2011, 135, 453–460.

[36]

Gañán-Gómez, I.; Wei, Y.; Yang, H.; Boyano-Adánez, M. C.; García-Manero, G. Oncogenic functions of the transcription factor Nrf2. Free Radic. Biol. Med. 2013, 65, 750–764.

[37]

Carvajal, S.; Perramón, M.; Casals, G.; Oró, D.; Ribera, J.; Morales-Ruiz, M.; Casals, E.; Casado, P.; Melgar-Lesmes, P.; Fernández-Varo, G. et al. Cerium oxide nanoparticles protect against oxidant injury and interfere with oxidative mediated kinase signaling in human-derived hepatocytes. Int. J. Mol. Sci. 2019, 20, 5959.

[38]

Saita, M.; Kaneko, J.; Sato, T.; Takahashi, S. S.; Wada-Takahashi, S.; Kawamata, R.; Sakurai, T.; Lee, M. C. I.; Hamada, N.; Kimoto, K. et al. Novel antioxidative nanotherapeutics in a rat periodontitis model: Reactive oxygen species scavenging by redox injectable gel suppresses alveolar bone resorption. Biomaterials 2016, 76, 292–301.

[39]

Liu, A. L.; Wang, Q.; Zhao, Z. N.; Wu, R.; Wang, M. C.; Li, J. W.; Sun, K. Y.; Sun, Z. Y.; Lv, Z. Y.; Xu, J. et al. Nitric oxide nanomotor driving exosomes-loaded microneedles for achilles tendinopathy healing. ACS Nano 2021, 15, 13339–13350.

Nano Research
Pages 7364-7372
Cite this article:
Xu X, Wang R, Li Y, et al. Cerium oxide nanozymes alleviate oxidative stress in tenocytes for Achilles tendinopathy healing. Nano Research, 2023, 16(5): 7364-7372. https://doi.org/10.1007/s12274-023-5416-5
Topics:

4610

Views

5

Crossref

3

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 19 August 2022
Revised: 16 December 2022
Accepted: 17 December 2022
Published: 28 February 2023
© Tsinghua University Press 2023
Return