AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Emerging monoelemental 2D materials (Xenes) for biosensor applications

Xiaohan Duan1,§Zhihao Liu1,§Zhongjian Xie2( )Ayesha Khan Tareen3Karim Khan4,1Bin Zhang1( )Han Zhang1
Key Laboratory of Optoelectronic Devices, Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering and Institute of Translational Medicine, First Affiliated Hospital (Shenzhen Second People’s Hospital), Health Science Center, Shenzhen University, Shenzhen 518060, China
Institute of Pediatrics, Shenzhen Children’s Hospital, Shenzhen 518038, China
School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China
School of Electrical Engineering & Intelligentization, Dongguan University of Technology, Dongguan 523808, China

§ Xiaohan Duan and Zhihao Liu contributed equally to this work.

Show Author Information

Graphical Abstract

Based on their high optical response, excellent electrical-optical properties, large specific surface area and easy modification, Xenes have been widely used in biomedical field. In this review, we introduce the general properties and biosensing applications of Xenes.

Abstract

Currently, numerous monoelemental two-dimensional (2D) materials, called Xenes, have been discovered, including graphyne (GD), silicene, germanene, arsenene, and borophene. Their structures, fabrication methods, as well as properties have been extensively explored. Based on their single-element composition, high optical response capability, excellent electrical-optical properties, large specific surface area (SSA) and easy modification, Xenes have been widely used in photoelectric applications (detection, modulation, light processing) and biomedicine (biological sensing, drug loading, bioimaging, etc.). Especially in the field of biomedicine, Xenes are expected to induce a great breakthrough. In this review, we introduce the structural characteristics, synthesis and modification methods of several common Xenes respectively. The general properties including optical, electronic, physical and chemical properties of Xenes are summarized. Their diverse utilization as biosensors for nucleic acid sequencing, bioactive detection, and cancer diagnosis, etc. are also explicitly explored. Finally, the challenges and future perspectives of Xenes in biosensor are discussed.

References

[1]

Tai, G. A.; Hu, T. S.; Zhou, Y. G.; Wang, X. F.; Kong, J. Z.; Zeng, T.; You, Y. C.; Wang, Q. Synthesis of atomically thin boron films on copper foils. Angew. Chem., Int. Ed. 2015, 54, 15473–15477.

[2]

Sabaeian, M.; Hajati, Y. Design of high performance and low resistive loss graphene solar cells. J. Eur. Opt. Soc. -Rapid Publ. 2020, 16, 14.

[3]

Stoller, M. D.; Park, S.; Zhu, Y. W.; An, J.; Ruoff, R. S. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498–3502.

[4]

Qu, L. T.; Liu, Y.; Baek, J. B.; Dai, L. M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321–1326.

[5]
Ahmad, K.; Ahmad, M. A.; Raza, R.; Khan, M. A.; Abbas, G. Synthesis and Electrical Characterizations of Graphene Oxide Incorporated Nanocomposite Cathode Materials for Low Temperature SOFCs [Online]. http://dx.doi.org/10.2139/ssrn.3973921. or https://ssrn.com/abstract=3973921 (accessed Nov. 29, 2021)
[6]

Ahmad, W.; Gong, Y. N.; Abbas, G.; Khan, K.; Khan, M.; Ali, G.; Shuja, A.; Tareen, K.; Khan, Q.; Li, D. L. Evolution of low-dimensional material-based field-effect transistors. Nanoscale 2021, 13, 5162–5186.

[7]

Cao, F. C.; Zhang, Y.; Wang, H. Q.; Khan, K.; Tareen, A. K.; Qian, W. J.; Zhang, H.; Ågren, H. Recent advances in oxidation stable chemistry of 2D MXenes. Adv. Mater. 2022, 34, 2107554.

[8]

Chen, H. L.; Gao, L. F.; Qin, Z. P.; Ge, Y. Q.; Khan, K.; Song, Y. F.; Xie, G. Q.; Xu, S. X.; Zhang, H. Recent advances of low-dimensional materials in Mid-and Far-infrared photonics. Appl. Mater. Today 2020, 21, 100800.

[9]

Dadashi Firouzjaei, M.; Karimiziarani, M.; Moradkhani, H.; Elliott, M.; Anasori, B. MXenes: The two-dimensional influencers. Mater. Today Adv. 2022, 13, 100202.

[10]

Hu, H. G.; Shi, Z.; Khan, K.; Cao, R.; Liang, W. Y.; Tareen, A. K.; Zhang, Y.; Huang, W. C.; Guo, Z. N.; Luo, X. L. et al. Recent advances in doping engineering of black phosphorus. J. Mater. Chem. A 2020, 8, 5421–5441.

[11]

Kang, J. L.; Zheng, C. Y.; Khan, K.; Tareen, A. K.; Aslam, M.; Wang, B. Two dimensional nanomaterials-enabled smart light regulation technologies: Recent advances and developments. Optik 2020, 220, 165191.

[12]

Khan, K.; Tareen, A. K.; Aslam, M.; Ali Khan, S.; Khan, Q.; Khan, Q. U.; Saeed, M.; Siddique Saleemi, A.; Kiani, M.; Ouyang, Z. B. et al. Fe-doped mayenite electride composite with 2D reduced Graphene Oxide: As a non-platinum based, highly durable electrocatalyst for Oxygen Reduction Reaction. Sci. Rep. 2019, 9, 19809.

[13]

Xu, H.; Ren, A. B.; Wu, J.; Wang, Z. M. Recent advances in 2D MXenes for photodetection. Adv. Funct. Mater. 2020, 30, 2000907.

[14]

Wang, X. D.; Wang, P.; Wang, J. L.; Hu, W. D.; Zhou, X. H.; Guo, N.; Huang, H.; Sun, S.; Shen, H.; Lin, T. et al. Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics. Adv. Mater. 2015, 27, 6575–6581.

[15]

Khan, K.; Tareen, A. K.; Aslam, M.; Mahmood, A.; Khan, Q.; Zhang, Y. P.; Ouyang, Z. B.; Guo, Z. Y.; Zhang, H. Going green with batteries and supercapacitor: Two dimensional materials and their nanocomposites based energy storage applications. Prog. Solid State Chem. 2020, 58, 100254.

[16]

Khan, K.; Tareen, A. K.; Aslam, M.; Sagar, R. U. R.; Zhang, B.; Huang, W. C.; Mahmood, A.; Mahmood, N.; Khan, K.; Zhang, H. et al. Recent progress, challenges, and prospects in two-dimensional photo-catalyst materials and environmental remediation. Nano-Micro Lett. 2020, 12, 167.

[17]

Ren, H. Z.; Zhang, S. P.; Huang, Y. T.; Cheng, Y. J.; Lv, L.; Dai, H. Dual-readout proximity hybridization-regulated and photothermally amplified protein analysis based on MXene nanosheets. Chem. Commun. 2020, 56, 13413–13416.

[18]

Chen, Y. J.; Wei, J.; Zhang, S. P.; Dai, H.; Yan, J. Y.; Lv, L. A portable multi-signal readout sensing platform based on plasmonic MXene induced signal amplification for point of care biomarker detection. Sens. Actuators B: Chem. 2022, 352, 131059.

[19]

Zhao, A. D.; Wang, B. Two-dimensional graphene-like Xenes as potential topological materials. APL Mater. 2020, 8, 030701.

[20]

Khan, K.; Tareen, A. K.; Aslam, M.; Khan, M. F.; Shi, Z.; Ma, C. Y.; Shams, S. S.; Khatoon, R.; Mahmood, N.; Zhang, H. et al. Synthesis, properties and novel electrocatalytic applications of the 2D-borophene Xenes. Prog. Solid State Chem. 2020, 59, 100283.

[21]

Wang, D. W.; Yang, A. J.; Lan, T. S.; Fan, C. Y.; Pan, J. B.; Liu, Z.; Chu, J. F.; Yuan, H.; Wang, X. H.; Rong, M. Z. et al. Tellurene based chemical sensor. J. Mater. Chem. A 2019, 7, 26326–26333.

[22]

Cui, H. P.; Zheng, K.; Tao, L. Q.; Yu, J. B.; Zhu, X. Y.; Li, X. D.; Chen, X. P. Monolayer tellurene-based gas sensor to detect SF6 decompositions: A first-principles study. IEEE Electron Device Lett. 2019, 40, 1522–1525.

[23]

Khan, K.; Tareen, A. K.; Iqbal, M.; Mahmood, A.; Mahmood, N.; Shi, Z.; Yin, J. D.; Qing, D.; Ma, C. Y.; Zhang, H. Recent development in graphdiyne and its derivative materials for novel biomedical applications. J. Mater. Chem. B 2021, 9, 9461–9484.

[24]

Khan, K.; Tareen, A. K.; Iqbal, M.; Shi, Z.; Zhang, H.; Guo, Z. Y. Novel emerging graphdiyne based two dimensional materials: Synthesis, properties and renewable energy applications. Nano Today 2021, 39, 101207.

[25]

Guo, H. J.; Zheng, K.; Cui, H. P.; Yu, J. B.; Tao, L. Q.; Li, X. D.; Liao, C. R.; Xie, L.; Chen, X. P. Tellurene based biosensor for detecting DNA/RNA nucleobases and amino acids: A theoretical insight. Appl. Surf. Sci. 2020, 532, 147451.

[26]

Khan, K.; Tareen, A. K.; Wang, L. D.; Aslam, M.; Ma, C. Y.; Mahmood, N.; Ouyang, Z. B.; Zhang, H.; Guo, Z. Y. Sensing applications of atomically thin group IV carbon siblings Xenes: Progress, challenges, and prospects. Adv. Funct. Mater. 2021, 31, 2005957.

[27]

Khan, S. A.; Ali, S.; Saeed, K.; Usman, M.; Khan, I. Advanced cathode materials and efficient electrolytes for rechargeable batteries: Practical challenges and future perspectives. J. Mater. Chem. A 2019, 7, 10159–10173.

[28]

Ma, C. Y.; Yin, P.; Khan, K.; Tareen, A. K.; Huang, R.; Du, J.; Zhang, Y.; Shi, Z.; Cao, R.; Wei, S. R. et al. Broadband nonlinear photonics in few-layer borophene. Small 2021, 17, 2006891.

[29]

Shi, Z.; Cao, R.; Khan, K.; Tareen, A. K.; Liu, X. S.; Liang, W. Y.; Zhang, Y.; Ma, C. Y.; Guo, Z. N.; Luo, X. L. et al. Two-dimensional tellurium: Progress, challenges, and prospects. Nano-Micro Lett. 2020, 12, 99.

[30]

Tareen, A. K.; Khan, K.; Aslam, M.; Liu, X. K.; Zhang, H. Confinement in two-dimensional materials: Major advances and challenges in the emerging renewable energy conversion and other applications. Prog. Solid State Chem. 2021, 61, 100294.

[31]

Grazianetti, C.; Martella, C.; Molle, A. The xenes generations: A taxonomy of epitaxial single-element 2D materials. Phys. Status Solidi (RRL) 2020, 14, 1900439.

[32]

Zhang, L.; Khan, K.; Zou, J. F.; Zhang, H.; Li, Y. C. Recent advances in emerging 2D material-based gas sensors: Potential in disease diagnosis. Adv. Mater. Interfaces 2019, 6, 1901329.

[33]

Kong, X. K.; Liu, Q. C.; Zhang, C. L.; Peng, Z. M.; Chen, Q. W. Elemental two-dimensional nanosheets beyond graphene. Chem. Soc. Rev. 2017, 46, 2127–2157.

[34]

Tan, S. J.; Campolongo, M. J.; Luo, D.; Cheng, W. L. Building plasmonic nanostructures with DNA. Nat. Nanotechnol. 2011, 6, 268–276.

[35]

Qiu, M.; Ren, W. X.; Jeong, T.; Won, M.; Park, G. Y.; Sang, D. K.; Liu, L. P.; Zhang, H.; Kim, J. S. Omnipotent phosphorene: A next-generation, two-dimensional nanoplatform for multidisciplinary biomedical applications. Chem. Soc. Rev. 2018, 47, 5588–5601.

[36]

Zhang, S. L.; Guo, S. Y.; Chen, Z. F.; Wang, Y. L.; Gao, H. J.; Gómez-Herrero, J.; Ares, P.; Zamora, F.; Zhu, Z.; Zeng, H. B. Recent progress in 2D group-VA semiconductors: From theory to experiment. Chem. Soc. Rev. 2018, 47, 982–1021.

[37]

Wang, T. T.; Wang, H. D.; Kou, Z. K.; Liang, W. Y.; Luo, X. L.; Verpoort, F.; Zeng, Y. J.; Zhang, H. Xenes as an emerging 2D monoelemental family: Fundamental electrochemistry and energy applications. Adv. Funct. Mater. 2020, 30, 2002885.

[38]
Moon, J. S.; Seo, H. C.; Le, D.; Fung, H.; Schmitz, A.; Oh, T.; Kim, S.; Son, K. A.; Zehnder, D.; Yang, B. H. 11 THz figure-of-merit phase-change RF switches for reconfigurable wireless front-ends. In Proceedings of 2015 IEEE MTT-S International Microwave Symposium, Phoenix, Phoenix, USA, 2015, pp 1–4.
[39]

Da Silveira Firmiano, E. G.; Rabelo, A. C.; Dalmaschio, C. J.; Pinheiro, A. N.; Pereira, E. C.; Schreiner, W. H.; Leite, E. R. Supercapacitor electrodes obtained by directly bonding 2D MoS2 on reduced graphene oxide. Adv. Energy Mater. 2014, 4, 1301380.

[40]

Khan, K.; Tareen, A. K.; Aslam, M.; Wang, R. H.; Zhang, Y. P.; Mahmood, A.; Ouyang, Z. B.; Zhang, H.; Guo, Z. Y. Recent developments in emerging two-dimensional materials and their applications. J. Mater. Chem. C 2020, 8, 387–440.

[41]

Khan, K.; Tareen, A. K.; Aslam, M.; Zhang, Y. P.; Wang, R. H.; Ouyang, Z. B.; Gou, Z. Y.; Zhang, H. Recent advances in two-dimensional materials and their nanocomposites in sustainable energy conversion applications. Nanoscale 2019, 11, 21622–21678.

[42]

Khan, K.; Tareen, A. K.; Iqbal, M.; Wang, L. D.; Ma, C. Y.; Shi, Z.; Ye, Z.; Ahmad, W.; Rehman Sagar, R. U.; Shams, S. S. et al. Navigating recent advances in monoelemental materials (Xenes)-fundamental to biomedical applications. Prog. Solid State Chem. 2021, 63, 100326.

[43]

Khan, K.; Tareen, A. K.; Khan, Q. U.; Iqbal, M.; Zhang, H.; Guo, Z. Y. Novel synthesis, properties and applications of emerging group VA two-dimensional monoelemental materials (2D-Xenes). Mater. Chem. Front. 2021, 5, 6333–6391.

[44]

Sharma, P. K.; Ruotolo, A.; Khan, R.; Mishra, Y. K.; Kaushik, N. K.; Kim, N. Y.; Kaushik, A. K. Perspectives on 2D-borophene flatland for smart bio-sensing. Mater. Lett. 2022, 308, 131089.

[45]

O'Neill, A.; Khan, U.; Nirmalraj, P. N.; Boland, J.; Coleman, J. N. Graphene dispersion and exfoliation in low boiling point solvents. J. Phys. Chem. C 2011, 115, 5422–5428.

[46]

Paton, K. R.; Varrla, E.; Backes, C.; Smith, R. J.; Khan, U.; O’neill, A.; Boland, C.; Lotya, M.; Istrate, O. M.; King, P. et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 2014, 13, 624–630.

[47]

Taylor, A. Biochemistry of tellurium. Biol. Trace Elem. Res. 1996, 55, 231–239.

[48]

Shi, Z.; Zhang, H. Q.; Khan, K.; Cao, R.; Xu, K. K.; Zhang, H. Two-dimensional selenium and its composites for device applications. Nano Res. 2022, 15, 104–122.

[49]

Shi, Z.; Zhang, H.; Khan, K.; Cao, R.; Zhang, Y.; Ma, C. Y.; Tareen, A. K.; Jiang, Y. F.; Jin, M. X.; Zhang, H. Two-dimensional materials toward Terahertz optoelectronic device applications. J. Photochem. Photobiol. C: Photochem. Rev. 2022, 51, 100473.

[50]

Liu, C.; Kim, H. S., Won, M., Jung, E.; Kim, J. S. Navigating 2D monoelemental materials (Xenes) for cancer nanomedicine. Matter 2020, 3, 12–13.

[51]

VahidMohammadi, A.; Hadjikhani, A.; Shahbazmohamadi, S.; Beidaghi, M. Two-dimensional vanadium carbide (MXene) as a high capacity cathode material for rechargeable aluminum batteries. ACS Nano 2017, 11, 11135–11144.

[52]

Wang, L. D.; Dai, C. D.; Jiang, L. F.; Tong, G. L.; Xiong, Y. H.; Khan, K.; Tang, Z. M.; Chen, X.; Zeng, H. B. Advanced devices for tumor diagnosis and therapy. Small 2021, 17, 2100003.

[53]

Zeraati, A. S.; Mirkhani, S. A.; Sun, P. C.; Naguib, M.; Braun, P. V.; Sundararaj, U. Improved synthesis of Ti3C2Tx MXenes resulting in exceptional electrical conductivity, high synthesis yield, and enhanced capacitance. Nanoscale 2021, 13, 3572–3580.

[54]

Bhattacharya, A.; Brea, R. J.; Niederholtmeyer, H.; Devaraj, N. K. A minimal biochemical route towards de novo formation of synthetic phospholipid membranes. Nat. Commun. 2019, 10, 300.

[55]

Tao, W.; Ji, X. Y.; Zhu, X. B.; Li, L.; Wang, J. Q.; Zhang, Y.; Saw, P. E.; Li, W. L.; Kong, N.; Islam, M. A. et al. Two-dimensional antimonene-based photonic nanomedicine for cancer theranostics. Adv. Mater. 2018, 30, 1802061.

[56]

Tao, W.; Ji, X. Y.; Xu, X. D.; Islam, M. A.; Li, Z. J.; Chen, S.; Saw, P. E.; Zhang, H.; Bharwani, Z.; Guo, Z. L. et al. Antimonene quantum dots: Synthesis and application as near-infrared photothermal agents for effective cancer therapy. Angew. Chem., Int. Ed. 2017, 56, 11896–11900.

[57]

Lin, Y.; Wu, Y.; Wang, R.; Tao, G.; Luo, P. F.; Lin, X.; Huang, G. M.; Li, J.; Yang, H. H. Two-dimensional tellurium nanosheets for photoacoustic imaging-guided photodynamic therapy. Chem. Commun. 2018, 54, 8579–8582.

[58]

Li, C. C.; Zhang, Y. F.; Li, Z. M.; Mei, E. C.; Lin, J.; Li, F.; Chen, C. G.; Qing, X.; Hou, L. Y.; Xiong, L. L. et al. Light-responsive biodegradable nanorattles for cancer theranostics. Adv. Mater. 2018, 30, 1706150.

[59]

Dai, M. Z.; Huo, C. H.; Zhang, Q.; Khan, K.; Zhang, X. Y.; Shen, C. Electrochemical mechanism and structure simulation of 2D lithium-ion battery. Adv. Theory Simul. 2018, 1, 1800023.

[60]

Khan, K.; Tareen, A. K.; Aslam, M.; Khan, Q.; Khan, S. A.; Khan, Q. U.; Saleemi, A. S.; Wang, R. H.; Zhang, Y. P.; Guo, Z. Y. et al. Novel two-dimensional carbon-chromium nitride-based composite as an electrocatalyst for oxygen reduction reaction. Front. Chem. 2019, 7, 738.

[61]

Ou, M. T.; Wang, X.; Yu, L.; Liu, C.; Tao, W.; Ji, X. Y.; Mei, L. The emergence and evolution of borophene. Adv. Sci. 2021, 8, 2001801.

[62]

Ji, X. Y.; Kong, N.; Wang, J. Q.; Li, W. L.; Xiao, Y. L.; Gan, S. T.; Zhang, Y.; Li, Y. J.; Song, X. R.; Xiong, Q. Q. et al. A novel top-down synthesis of ultrathin 2D boron nanosheets for multimodal imaging-guided cancer therapy. Adv. Mater. 2018, 30, 10803031.

[63]

Zhou, X. F.; Dong, X.; Oganov, A. R.; Zhu, Q.; Tian, Y. J.; Wang, H. T. Semimetallic two-dimensional boron allotrope with massless dirac fermions. Phys. Rev. Lett. 2014, 112, 085502.

[64]

Carrete, J.; Li, W.; Lindsay, L.; Broido, D. A.; Gallego, L. J.; Mingo, N. Physically founded phonon dispersions of few-layer materials and the case of borophene. Mater. Res. Lett. 2016, 4, 204–211.

[65]

Zhong, Q.; Kong, L. J.; Gou, J.; Li, W. B.; Sheng, S. X.; Yang, S.; Cheng, P.; Li, H.; Wu, K. H.; Chen, L. Synthesis of borophene nanoribbons on Ag(110) surface. Phys. Rev. Mater. 2017, 1, 021001.

[66]

Peng, B.; Zhang, H.; Shao, H. Z.; Xu, Y. F.; Zhang, R. J.; Zhu, H. Y. The electronic, optical, and thermodynamic properties of borophene from first-principles calculations. J. Mater. Chem. C 2016, 4, 3592–3598.

[67]

Ogitsu, T.; Schwegler, E.; Galli, G. β-rhombohedral boron: At the crossroads of the chemistry of boron and the physics of frustration. Chem. Rev. 2013, 113, 3425–3449.

[68]

Oganov, A. R.; Chen, J. H.; Gatti, C.; Ma, Y. Z.; Ma, Y. M.; Glass, C. W.; Liu, Z. X.; Yu, T.; Kurakevych, O. O.; Solozhenko, V. L. Ionic high-pressure form of elemental boron. Nature 2009, 457, 863–867.

[69]

Chen, X. P.; Yang, Q.; Meng, R. S.; Jiang, J. K.; Liang, Q. H.; Tan, C. J.; Sun, X. The electronic and optical properties of novel germanene and antimonene heterostructures. J. Mater. Chem. C 2016, 4, 5434–5441.

[70]

Mannix, A. J.; Zhou, X. F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X. L.; Fisher, B. L.; Santiago, U.; Guest, J. R. et al. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 2015, 350, 1513–1516.

[71]

Feng, B. J.; Zhang, J.; Zhong, Q.; Li, W. B.; Li, S.; Li, H.; Cheng, P.; Meng, S.; Chen, L.; Wu, K. H. Experimental realization of two-dimensional boron sheets. Nat. Chem. 2016, 8, 563–568.

[72]

Wu, R. T.; Gozar, A.; Božović, I. Large-area borophene sheets on sacrificial Cu(111) films promoted by recrystallization from subsurface boron. npj Quantum Mater. 2019, 4, 40.

[73]

Li, W. B.; Kong, L. J.; Chen, C. Y.; Gou, J.; Sheng, S. X.; Zhang, W. F.; Li, H.; Chen, L.; Cheng, P.; Wu, K. H. Experimental realization of honeycomb borophene. Sci. Bull. 2018, 63, 282–286.

[74]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[75]

Majidi, R.; Karami, A. Electronic properties of bilayer and trilayer graphyne in the presence of electric field. Struct. Chem. 2014, 25, 853–858.

[76]

Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655.

[77]

Chowdhury, R.; Adhikari, S.; Rees, P.; Wilks, S. P.; Scarpa, F. Graphene-based biosensor using transport properties. Phys. Rev. B 2011, 83, 045401.

[78]

Alhaddad, A.; Adam, M. P.; Botsoa, J.; Dantelle, G.; Perruchas, S.; Gacoin, T.; Mansuy, C.; Lavielle, S.; Malvy, C.; Treussart, F. et al. Nanodiamond as a vector for siRNA delivery to ewing sarcoma cells. Small 2011, 7, 3087–3095.

[79]

Feng, L. Y.; Wu, L.; Qu, X. G. New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Adv. Mater. 2013, 25, 168–186.

[80]

Kuang, C. Y.; Tang, G.; Jiu, T. G.; Yang, H.; Liu, H. B.; Li, B. R.; Luo, W. N.; Li, X. D.; Zhang, W. J.; Lu, F. S. et al. Highly efficient electron transport obtained by doping PCBM with graphdiyne in planar-heterojunction perovskite solar cells. Nano Lett. 2015, 15, 2756–2762.

[81]

Li, G. X.; Li, Y. L.; Qian, X. M.; Liu, H. B.; Lin, H. W.; Chen, N.; Li, Y. J. Construction of tubular molecule aggregations of graphdiyne for highly efficient field emission. J. Phys. Chem. C 2011, 115, 2611–2615.

[82]

Long, M. Q.; Tang, L.; Wang, D.; Li, Y. L.; Shuai, Z. G. Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: Theoretical predictions. ACS Nano 2011, 5, 2593–2600.

[83]

Qi, H. T.; Yu, P.; Wang, Y. X.; Han, G. C.; Liu, H. B.; Yi, Y. P.; Li, Y. L.; Mao, L. Q. Graphdiyne oxides as excellent substrate for electroless deposition of Pd clusters with high catalytic activity. J. Am. Chem. Soc. 2015, 137, 5260–5263.

[84]

Liu, S. B.; Wei, L.; Hao, L.; Fang, N.; Chang, M. W.; Xu, R.; Yang, Y. H.; Chen, Y. Sharper and faster “nano darts” kill more bacteria: A study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano 2009, 3, 3891–3902.

[85]

Qian, X. M.; Ning, Z. Y.; Li, Y. L.; Liu, H. B.; Ouyang, C. B.; Chen, Q.; Li, Y. J. Construction of graphdiyne nanowires with high-conductivity and mobility. Dalton Trans. 2012, 41, 730–733.

[86]

Xiao, J. Y.; Shi, J. J.; Liu, H. B.; Xu, Y. Z.; Lv, S. T.; Luo, Y. H.; Li, D. M.; Meng, Q. B.; Li, Y. L. Efficient CH3NH3PbI3 perovskite solar cells based on graphdiyne (GD)-modified P3HT hole-transporting material. Adv. Energy Mater. 2015, 5, 1401943.

[87]

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

[88]

Fang, Y.; Liu, Y. X.; Qi, L.; Xue, Y. R.; Li, Y. L. 2D graphdiyne: An emerging carbon material. Chem. Soc. Rev. 2022, 51, 2681–2709.

[89]

Zuo, Z. C.; Shang, H.; Chen, Y. H.; Li, J. F.; Liu, H. B.; Li, Y. J.; Li, Y. L. A facile approach for graphdiyne preparation under atmosphere for an advanced battery anode. Chem. Commun. 2017, 53, 8074–8077.

[90]

Qian, X. M.; Liu, H. B.; Huang, C. S.; Chen, S. H.; Zhang, L.; Li, Y. J.; Wang, J. Z.; Li, Y. L. Self-catalyzed growth of large-area nanofilms of two-dimensional carbon. Sci. Rep. 2015, 5, 7756.

[91]

Liu, R.; Gao, X.; Zhou, J. Y.; Xu, H.; Li, Z. Z.; Zhang, S. Q.; Xie, Z. Q.; Zhang, J.; Liu, Z. F. Chemical vapor deposition growth of linked carbon monolayers with acetylenic scaffoldings on silver foil. Adv. Mater. 2017, 29, 1604665.

[92]

Wang, T.; Huang, J. M.; Lv, H. F.; Fan, Q. T.; Feng, L.; Tao, Z. J.; Ju, H. X.; Wu, X. J.; Tait, S. L.; Zhu, J. F. Kinetic strategies for the formation of graphyne nanowires via sonogashira coupling on Ag(111). J. Am. Chem. Soc. 2018, 140, 13421–13428.

[93]

Navaee, A.; Salimi, A.; Sham, T. K. Bipolar electrochemistry as a powerful technique for rapid synthesis of ultrathin graphdiyne nanosheets: Improvement of photoelectrocatalytic activity toward both hydrogen and oxygen evolution. Int. J. Hydrogen Energy 2021, 46, 12906–12914.

[94]

Gao, X.; Zhu, Y. H.; Yi, D.; Zhou, J. Y.; Zhang, S. S.; Yin, C.; Ding, F.; Zhang, S. Q.; Yi, X. H.; Wang, J. Z. et al. Ultrathin graphdiyne film on graphene through solution-phase van der Waals epitaxy. Sci. Adv. 2018, 4, eaat6378.

[95]

Chen, L.; Liu, C. C.; Feng, B. J.; He, X. Y.; Cheng, P.; Ding, Z. J.; Meng, S.; Yao, Y. G.; Wu, K. H. Evidence for dirac fermions in a honeycomb lattice based on silicon. Phys. Rev. Lett. 2012, 109, 056804.

[96]

Lalmi, B.; Oughaddou, H.; Enriquez, H.; Kara, A.; Vizzini, S.; Ealet, B.; Aufray, B. Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 2010, 97, 223109.

[97]

Fleurence, A.; Yamada-Takamura, Y. Insights into the spontaneous formation of silicene sheet on diboride thin films. Appl. Phys. Lett. 2017, 110, 041601.

[98]

Molle, A.; Goldberger, J.; Houssa, M.; Xu, Y.; Zhang, S. C.; Akinwande, D. Buckled two-dimensional Xene sheets. Nat. Mater. 2017, 16, 163–169.

[99]

Meng, L.; Wang, Y. L.; Zhang, L. Z.; Du, S. X.; Wu, R. T.; Li, L. F.; Zhang, Y.; Li, G.; Zhou, H. T.; Hofer, W. A. et al. Buckled silicene formation on Ir(111). Nano Lett. 2013, 13, 685–690.

[100]

Mojumder, R. H.; Islam, S.; Park, J. Germanene/2D-AlP van der Waals heterostructure: Tunable structural and electronic properties. AIP Adv. 2021, 11, 015126.

[101]

Muzychenko, D. A.; Oreshkin, A. I.; Legen'ka, A. D.; Van Haesendonck, C. Atomic insights into single-layer and bilayer germanene on Al(111) surface. Mater. Today Phys. 2020, 14, 100241.

[102]

Cahangirov, S.; Topsakal, M.; Aktürk, E.; Şahin, H.; Ciraci, S. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 2009, 102, 236804.

[103]

Liu, C. C.; Feng, W. X.; Yao, Y. G. Quantum spin hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. 2011, 107, 076802.

[104]

Yao, Y. G.; Ye, F.; Qi, X. L.; Zhang, S. C.; Fang, Z. Spin–orbit gap of graphene: First-principles calculations. Phys. Rev. B 2007, 75, 041401.

[105]

Ye, X. S.; Shao, Z. G.; Zhao, H. B.; Yang, L.; Wang, C. L. Intrinsic carrier mobility of germanene is larger than graphene’s: First-principle calculations. RSC Adv. 2014, 4, 21216–21220.

[106]

Li, L. F.; Lu, S. Z.; Pan, J. B.; Qin, Z. H.; Wang, Y. Q.; Wang, Y. L.; Cao, G. Y.; Du, S. X.; Gao, H. J. Buckled germanene formation on Pt(111). Adv. Mater. 2014, 26, 4820–4824.

[107]

Zhuang, J. C.; Liu, C.; Zhou, Z. Y.; Casillas, G.; Feng, H. F.; Xu, X.; Wang, J. O.; Hao, W. C.; Wang, X. L.; Dou, S. X. et al. Dirac signature in germanene on semiconducting substrate. Adv. Sci. 2018, 5, 1800207.

[108]

Zhu, F. F.; Chen, W. J.; Xu, Y.; Gao, C. L.; Guan, D. D.; Liu, C. H.; Qian, D.; Zhang, S. C.; Jia, J. F. Epitaxial growth of two-dimensional stanene. Nat. Mater. 2015, 14, 1020–1025.

[109]

Pang, W. H.; Nishino, K.; Ogikubo, T.; Araidai, M.; Nakatake, M.; Le Lay, G.; Yuhara, J. Epitaxial growth of honeycomb-like stanene on Au(111). Appl. Surf. Sci. 2020, 517, 146224.

[110]

Mu, X.; Wang, J.; Sun, M. Two-dimensional black phosphorus: Physical properties and applications. Mater. Today Phys. 2019, 8, 92–111.

[111]

Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

[112]

Carvalho, A.; Wang, M.; Zhu, X.; Rodin, A. S.; Su, H. B.; Castro Neto, A. H. Phosphorene: From theory to applications. Nat. Rev. Mater. 2016, 1, 16061.

[113]

Qiao, J. S.; Kong, X. H.; Hu, Z. X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475.

[114]

Tao, W.; Zhu, X. B.; Yu, X. H.; Zeng, X. W.; Xiao, Q. L.; Zhang, X. D.; Ji, X. Y.; Wang, X. S.; Shi, J. J.; Zhang, H. et al. Black phosphorus nanosheets as a robust delivery platform for cancer theranostics. Adv. Mater. 2017, 29, 1603276.

[115]

Wu, L. M.; Xie, Z. J.; Lu, L.; Zhao, J. L.; Wang, Y. Z.; Jiang, X. T.; Ge, Y. Q.; Zhang, F.; Lu, S. B.; Guo, Z. N. et al. Few-layer tin sulfide: A promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion. Adv. Opt. Mater. 2018, 6, 1700985.

[116]

Tran, V.; Soklaski, R.; Liang, Y. F.; Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 2014, 89, 235319.

[117]

Li, L. K.; Kim, J.; Jin, C. H.; Ye, G. J.; Qiu, D. Y.; da Jornada, F. H.; Shi, Z. W.; Chen, L.; Zhang, Z. C.; Yang, F. Y. et al. Direct observation of the layer-dependent electronic structure in phosphorene. Nat. Nanotechnol. 2017, 12, 21–25.

[118]

Zeng, X. W.; Luo, M. M.; Liu, G.; Wang, X. S.; Tao, W.; Lin, Y. X.; Ji, X. Y.; Nie, L.; Mei, L. Polydopamine-modified black phosphorous nanocapsule with enhanced stability and photothermal performance for tumor multimodal treatments. Adv. Sci. 2018, 5, 1800510.

[119]

Luo, M. M.; Fan, T. J.; Zhou, Y.; Zhang, H.; Mei, L. 2D black phosphorus-based biomedical applications. Adv. Funct. Mater. 2019, 29, 1808306.

[120]

Liang, X.; Ye, X. Y.; Wang, C.; Xing, C. Y.; Miao, Q. W.; Xie, Z. J.; Chen, X. L.; Zhang, X. D.; Zhang, H.; Mei, L. Photothermal cancer immunotherapy by erythrocyte membrane-coated black phosphorus formulation. J. Control. Release 2019, 296, 150–161.

[121]

Ye, X. Y.; Liang, X.; Chen, Q.; Miao, Q. W.; Chen, X. L.; Zhang, X. D.; Mei, L. Surgical tumor-derived personalized photothermal vaccine formulation for cancer immunotherapy. ACS Nano 2019, 13, 2956–2968.

[122]

Ou, M. T.; Lin, C, C.; Wang, Y.; Lu, Y. T.; Wang, W. Y.; Li, Z. M.; Zeng, W. W.; Zeng, X. W.; Ji, X. Y.; Mei, L. Heterojunction engineered bioactive chlorella for cascade promoted cancer therapy. J. Control. Release 2022, 345, 755–769.

[123]

Chen, T.; Zeng, W. W.; Tie, C. J.; Yu, M.; Hao, H. S.; Deng, Y.; Li, Q. Q.; Zheng, H. R.; Wu, M. Y.; Mei, L. Engineered gold/black phosphorus nanoplatforms with remodeling tumor microenvironment for sonoactivated catalytic tumor theranostics. Bioact. Mater. 2022, 10, 515–525.

[124]

Shi, Z. Q.; Li, Q. Q.; Mei, L. pH-Sensitive nanoscale materials as robust drug delivery systems for cancer therapy. Chin. Chem. Lett. 2020, 31, 1345–1356.

[125]

Bridgman, P. W. Two new modifications of phosphorus. J. Am. Chem. Soc. 1914, 36, 1344–1363.

[126]

Warschauer, D. Electrical and optical properties of crystalline black phosphorus. J. Appl. Phys. 1963, 34, 1853–1860.

[127]

Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X. F.; Tománek, D.; Ye, P. D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033–4041.

[128]

Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.

[129]

Kamal, C.; Ezawa, M. Arsenene: Two-dimensional buckled and puckered honeycomb arsenic systems. Phys. Rev. B 2015, 91, 085423.

[130]

Wang, G. L.; Zhang, J. Y.; Yang, J. B.; Wang, Y. Tuning the structural, electronic and adsorption properties of Au-embedded 2D WSe2 and Arsenene nanosheets: A DFT study. Comput. Theor. Chem. 2020, 1186, 112913.

[131]

Swetha, B.; Nagarajan, V.; Soltani, A.; Chandiramouli, R. Novel gamma arsenene nanosheets as sensing medium for vomiting agents: A first-principles research. Comput. Theor. Chem. 2020, 1185, 112876.

[132]

Aktürk, O. Ü.; Özçelik, V. O.; Ciraci, S. Single-layer crystalline phases of antimony: Antimonenes. Phys. Rev. B 2015, 91, 235446.

[133]

Wang, Y. L.; Ding, Y. Unexpected buckled structures and tunable electronic properties in arsenic nanosheets: Insights from first-principles calculations. J. Phys.: Condens. Matter 2015, 27, 225304.

[134]

Liu, Y. S.; Wang, T.; Robertson, J.; Luo, J. B.; Guo, Y. Z.; Liu, D. M. Band structure, band offsets, and intrinsic defect properties of few-layer arsenic and antimony. J. Phys. Chem. C 2020, 124, 7441–7448.

[135]

Zhang, S. L.; Yan, Z.; Li, Y. F.; Chen, Z. F.; Zeng, H. B. Atomically thin arsenene and antimonene: Semimetal-semiconductor and indirect-direct band-gap transitions. Angew. Chem., Int. Ed. 2015, 54, 3112–3115.

[136]

Chen, Y. B.; Chen, C. Y.; Kealhofer, R.; Liu, H. L.; Yuan, Z. Q.; Jiang, L. L.; Suh, J.; Park, J.; Ko, C.; Choe, H. S. et al. Black arsenic: A layered semiconductor with extreme in-plane anisotropy. Adv. Mater. 2018, 30, 1800754.

[137]

Zhang, Z. Y.; Cao, H. N.; Zhang, J. C.; Wang, Y. H.; Xue, D. S.; Si, M. S. Orientation and strain modulated electronic structures in puckered arsenene nanoribbons. AIP Adv. 2015, 5, 067117.

[138]

Nagarajan, V.; Chandiramouli, R. Investigation on electronic properties of functionalized arsenene nanoribbon and nanotubes: A first-principles study. Chem. Phys. 2017, 495, 35–41.

[139]

Chen, B.; Xue, L.; Han, Y.; Li, X. Q.; Yang, Z. Structural, mechanical, and electronic properties of nanotubes based on buckled arsenene: A first-principles study. Mater. Today Commun. 2020, 22, 100791.

[140]

Liang, J. C.; Hu, Y.; Zhang, K. Q.; Wang, Y. D.; Song, X. M.; Tao, A. Y.; Liu, Y. Z.; Jin, Z. 2D layered black arsenic-phosphorus materials: Synthesis, properties, and device applications. Nano Res. 2022, 15, 3737–3752.

[141]

Gusmão, R.; Sofer, Z.; Bouša, D.; Pumera, M. Pnictogen (As, Sb, Bi) nanosheets for electrochemical applications are produced by shear exfoliation using kitchen blenders. Angew. Chem., Int. Ed. 2017, 56, 14417–14422.

[142]

Zhang, L. J.; Gu, J. X.; Chen, Z. F. Structures and functions of two-dimensional materials: From theoretical prediction to experimental realization. Chin. Sci. Bull. 2021, 66, 563–579.

[143]

Wang, X.; Song, J.; Qu, J. L. Antimonene: From experimental preparation to practical application. Angew. Chem., Int. Ed. 2019, 58, 1574–1584.

[144]

Lei, T.; Liu, C.; Zhao, J. L.; Li, J. M.; Li, Y. P.; Wang, J. O.; Wu, R.; Qian, H. J.; Wang, H. Q.; Ibrahim, K. Electronic structure of antimonene grown on Sb2Te3(111) and Bi2Te3 substrates. J. Appl. Phys. 2016, 119, 015302.

[145]

Wu, X.; Shao, Y.; Liu, H.; Feng, Z. L.; Wang, Y. L.; Sun, J. T.; Liu, C.; Wang, J. O.; Liu, Z. L.; Zhu, S. Y. et al. Epitaxial growth and air-stability of monolayer antimonene on PdTe2. Adv. Mater. 2017, 29, 1605407.

[146]

Fickert, M.; Assebban, M.; Canet-Ferrer, J.; Abellán, G. Phonon properties and photo-thermal oxidation of micromechanically exfoliated antimonene nanosheets. 2D Mater. 2021, 8, 015018.

[147]

Aktürk, E.; Aktürk, O. Ü.; Ciraci, S. Single and bilayer bismuthene: Stability at high temperature and mechanical and electronic properties. Phys. Rev. B 2016, 94, 014115.

[148]

Luo, B. C.; Wang, X. H.; Tian, E. K.; Li, G. W.; Li, L. T. Electronic structure, optical and dielectric properties of BaTiO3/CaTiO3/SrTiO3 ferroelectric superlattices from first-principles calculations. J. Mater. Chem. C 2015, 3, 8625–8633.

[149]

Shiraz, A. K.; Goharrizi, A. Y. Optical properties of buckled bismuthene. Phys. Status Solidi (b) 2020, 257, 1900408.

[150]

Nagao, T.; Sadowski, J. T.; Saito, M.; Yaginuma, S.; Fujikawa, Y.; Kogure, T.; Ohno, T.; Hasegawa, Y.; Hasegawa, S.; Sakurai, T. Nanofilm allotrope and phase transformation of ultrathin Bi film on Si(111)7×7. Phys. Rev. Lett. 2004, 93, 105501.

[151]

Kaminski, D.; Poodt, P.; Aret, E.; Radenovic, N.; Vlieg, E. Surface alloys, overlayer and incommensurate structures of Bi on Cu(111). Surf. Sci. 2005, 575, 233–246.

[152]

Wang, X. X.; Shen, N. F.; Yang, X. D.; Wang, B. L. Bismuthene: Epitaxially grown on MoTe2 and its grain boundary. J. Cryst. Growth 2020, 546, 125787.

[153]

Xian, L. D.; Paz, A. P.; Bianco, E.; Ajayan, P. M.; Rubio, A. Square selenene and tellurene: Novel group VI elemental 2D materials with nontrivial topological properties. 2D Mater. 2017, 4, 041003.

[154]

Wang, Y. X.; Qiu, G.; Wang, R. X.; Huang, S. Y.; Wang, Q. X.; Liu, Y. Y.; Du, Y. C.; Goddard, W. A.; Kim, M. J.; Xu, X. F. et al. Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron. 2018, 1, 228–236.

[155]

Doi, T.; Nakao, K.; Kamimura, H. The valence band structure of tellurium. I. the k·p perturbation method. J. Phys. Soc. Jpn. 1970, 28, 36–43.

[156]

Zhu, Z. L.; Cai, X. L.; Yi, S.; Chen, J. L.; Dai, Y. W.; Niu, C. Y.; Guo, Z. X.; Xie, M. H.; Liu, F.; Cho, J. H. et al. Multivalency-driven formation of Te-based monolayer materials: A combined first-principles and experimental study. Phys. Rev. Lett. 2017, 119, 106101.

[157]

Huang, X. C.; Guan, J. Q.; Lin, Z. J.; Liu, B.; Xing, S. Y.; Wang, W. H.; Guo, J. D. Epitaxial growth and band structure of Te film on graphene. Nano Lett. 2017, 17, 4619–4623.

[158]

Chen, J. L.; Dai, Y. W.; Ma, Y. Q.; Dai, X. Q.; Ho, W.; Xie, M. H. Ultrathin β-tellurium layers grown on highly oriented pyrolytic graphite by molecular-beam epitaxy. Nanoscale 2017, 9, 15945–15948.

[159]

Paulauskas, T.; Sen, F. G.; Sun, C.; Longo, P.; Zhang, Y.; Hla, S. W.; Chan, M. K. Y.; Kim, M. J.; Klie, R. F. Stabilization of a monolayer tellurene phase at CdTe interfaces. Nanoscale 2019, 11, 14698–14706.

[160]

Rastgou, A.; Soleymanabadi, H.; Bodaghi, A. DNA sequencing by borophene nanosheet via an electronic response: A theoretical study. Microelectron. Eng. 2017, 169, 9–15.

[161]

Bhuvaneswari, R.; Maria, J. P.; Nagarajan, V.; Chandiramouli, R. Graphdiyne nanosheets as a sensing medium for formaldehyde and formic acid—A first-principles outlook. Comput. Theor. Chem. 2020, 1176, 112751.

[162]

Mortazavi, B.; Rahaman, O.; Makaremi, M.; Dianat, A.; Cuniberti, G.; Rabczuk, T. First-principles investigation of mechanical properties of silicene, germanene and stanene. Phys. E:Low-Dimens. Syst. Nanostruct. 2017, 87, 228–232.

[163]

Batmunkh, M.; Bat-Erdene, M.; Shapter, J. G. Phosphorene and phosphorene-based materials—Prospects for future applications. Adv. Mater. 2016, 28, 8586–8617.

[164]

Pumera, M.; Sofer, Z. 2D monoelemental arsenene, antimonene, and bismuthene: Beyond black phosphorus. Adv. Mater. 2017, 29, 1605299.

[165]

Hu, A. M.; Zhang, X. H.; Xiao, W. Z.; Meng, B. Structural, electronic, and optic properties of Se nanotubes. Phys. B:Condens. Matter 2022, 624, 413417.

[166]

Rao, Y. F.; Zheng, K.; Guo, H. J.; Yu, J. B.; Chen, X. P. 2D β-tellurene: Increase sensitivity toward toxic cyanide molecules. Vacuum 2021, 194, 110619.

[167]

Nath, S.; Bandyopadhyay, A.; Sen, S.; Jana, D. First principles investigation of structural, electronic and optical properties of synthesized radiaannulene oligomers for, 6, 6, 12-graphyne. J. Phys. Chem. Solids 2021, 153, 109990.

[168]

Qin, X. F.; Shao, Z. G.; Wang, C. L.; Yang, L. Electronic and optical properties of lithium-decorated δ-graphyne from first principles. Optik 2020, 216, 164898.

[169]

Tang, Y. N.; Chen, W. G.; Wang, Z. W.; Zhao, G.; Cui, Y. Q.; Li, Z. H.; Li, Y.; Feng, Z.; Dai, X. Q. Formation, electronic, gas sensing and catalytic characteristics of graphene-like materials: A first-principles study. Appl. Surf. Sci. 2020, 530, 147178.

[170]

Kochaev, A. I.; Meftakhutdinov, R. M.; Sibatov, R. T.; Timkaeva, D. A. Optical and thermoelectric properties of graphenylene and octagraphene nanotubes from first-principles calculations. Comput. Mater. Sci. 2021, 186, 109999.

[171]

Duo, Y. H.; Xie, Z. J.; Wang, L. D.; Abbasi, N. M.; Yang, T. Q.; Li, Z. H.; Hu, G. X.; Zhang, H. Borophene-based biomedical applications: Status and future challenges. Coord. Chem. Rev. 2021, 427, 213549.

[172]

Fazilaty, M.; Pourahmadi, M.; Shayesteh, M. R.; Hashemian, S. Investigating and comparing structural, electronic and optical properties of χ3-borophene in monolayer, nanoribbon and nanotube modes as a transparent metal. J. Phys. Chem. Solids 2021, 148, 109683.

[173]

Zhour, K.; Otero-Mato, J. M.; El Haj Hassan, F.; Fahs, H.; Vaezzadeh, M.; López-Lago, E.; Gallego, L. J.; Varela, L. M. Electronic and optical properties of borophene and graphene with an adsorbed ionic liquid: A density functional theory study. J. Mol. Liq. 2020, 316, 113803.

[174]

Abdullah, N. R.; Kareem, M. T.; Rashid, H. O.; Manolescu, A.; Gudmundsson, V. Spin-polarised DFT modeling of electronic, magnetic, thermal and optical properties of silicene doped with transition metals. Phys. E: Low-Dimens. Syst. Nanostruct. 2021, 129, 114644.

[175]

Chowdhury, S.; Jana, D. A theoretical review on electronic, magnetic and optical properties of silicene. Rep. Prog. Phys. 2016, 79, 126501.

[176]

Chen, X. P.; Sun, X.; Jiang, J. K.; Liang, Q. H.; Yang, Q.; Meng, R. S. Electrical and optical properties of germanene on single-layer BeO substrate. J. Phys. Chem. C 2016, 120, 20350–20356.

[177]

Yan, J. A.; Gao, S. P.; Stein, R.; Coard, G. Tuning the electronic structure of silicene and germanene by biaxial strain and electric field. Phys. Rev. B 2015, 91, 245403.

[178]

Barhoumi, M.; Sfina, N.; Lazaar, K.; Said, M. Electronic and optical properties of W-Sn-Z and W′-Sn-W′ monolayers using density functional theory. Solid State Commun. 2020, 321, 114016.

[179]

Fadaie, M.; Dideban, D.; Gülseren, O. Electronic and optical properties of stanane and armchair stanane nanoribbons. Appl. Phys. A 2020, 126, 460.

[180]

Kecik, D.; Özçelik, V. O.; Durgun, E.; Ciraci, S. Structure dependent optoelectronic properties of monolayer antimonene, bismuthene and their binary compound. Phys. Chem. Chem. Phys. 2019, 21, 7907–7917.

[181]

Wang, X.; Yu, X. T.; Song, J.; Huang, W. C.; Xiang, Y. J.; Dai, X. Y.; Zhang, H. Two-dimensional semiconducting antimonene in nanophotonic applications—A review. Chem. Eng. J. 2021, 406, 126876.

[182]

Han, R. Y.; Feng, S.; Sun, D. M.; Cheng, H. M. Properties and photodetector applications of two-dimensional black arsenic phosphorus and black phosphorus. Sci. China Inf. Sci. 2021, 64, 140402.

[183]

Bhuvaneswari, R.; Nagarajan, V.; Chandiramouli, R. Chemiresistive β-Tellurene nanosheets for detecting 2-Butanone and 2-Pentanone—A first-principles study. Mater. Today Commun. 2021, 26, 101758.

[184]

Choi, J. R.; Yong, K. W.; Choi. J. Y.; Nilghaz, A.; Lin, Y.; Xu, J.; Lu, X. N. Black phosphorus and its biomedical applications. Theranostics 2018, 8, 1005–1026.

[185]

Shao, J. D.; Xie, H. H.; Huang, H.; Li, Z. B.; Sun, Z. B.; Xu, Y. H.; Xiao, Q. L.; Yu, X. F.; Zhao, Y. T.; Zhang, H. et al. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat. Commun. 2016, 7, 12967.

[186]

Leenaerts, O.; Partoens, B.; Peeters, F. M. Tunable double Dirac cone spectrum in bilayer α-graphyne. Appl. Phys. Lett. 2013, 103, 013105.

[187]

Liu, J. M.; Shen, X. M.; Baimanov, D.; Wang, L. M.; Xiao, Y. T.; Liu, H. B.; Li, Y. L.; Gao, X. F.; Zhao, Y. L.; Chen, C. Y. Immobilized ferrous ion and glucose oxidase on graphdiyne and its application on one-step glucose detection. ACS Appl. Mater. Interfaces 2019, 11, 2647–2654.

[188]

Ebadi, M.; Reisi-Vanani, A. Methanol and carbon monoxide sensing and capturing by pristine and Ca-decorated graphdiyne: A DFT-D2 study. Phys. E: Low-Dimens. Syst. Nanostruct. 2021, 125, 114425.

[189]

Nagarajan, V.; Dharani, S.; Chandiramouli, R. Density functional studies on the binding of methanol and ethanol molecules to graphyne nanosheet. Comput. Theor. Chem. 2018, 1125, 86–94.

[190]

Chang, F.; Huang, L. J.; Guo, C. Z.; Xie, G. M.; Li, J. Q.; Diao, Q. Z. Graphdiyne-based one-step DNA fluorescent sensing platform for the detection of Mycobacterium tuberculosis and its drug-resistant genes. ACS Appl. Mater. Interfaces 2019, 11, 35622–35629.

[191]

Alesheikh, S.; Shahtahmassebi, N.; Roknabadi, M. R.; Shahri, R. P. Interaction of nucleobases with silicene nanoribbon: A density functional approach. Comput. Theor. Chem. 2017, 1103, 32–37.

[192]

Chang, Y. Z.; Lin, J. N.; Li, S. D.; Liu, H. Y. Adsorption of greenhouse gases (methane and carbon dioxide) on the pure and Pd-adsorbed stanene nanosheets: A theoretical study. Surf. Interfaces 2021, 22, 100878.

[193]

Chia, H. L.; Sturala, J.; Webster, R. D.; Pumera, M. Functionalized 2D germanene and silicene enzymatic system. Adv. Funct. Mater. 2021, 31, 2011125.

[194]

Taşaltın, C.; Türkmen, T. A.; Taşaltın, N.; Karakuş, S. Highly sensitive non-enzymatic electrochemical glucose biosensor based on PANI: β12 Borophene. J. Mater. Sci.: Mater. Electron. 2021, 32, 10750–10760.

[195]

Wang, C. X.; Yu, P.; Guo, S. Y.; Mao, L. Q.; Liu, H. B.; Li, Y. L. Graphdiyne oxide as a platform for fluorescence sensing. Chem. Commun. 2016, 52, 5629–5632.

[196]

Li, Y. X.; Li, X. H.; Meng, Y. C.; Hun, X. Photoelectrochemical platform for MicroRNA let-7a detection based on graphdiyne loaded with AuNPs modified electrode coupled with alkaline phosphatase. Biosens. Bioelectron. 2019, 130, 269–275.

[197]

Li, X. H.; Li, Y. X.; Zhang, J. Y.; Meng, Y. C.; Yu, X. J.; Wang, X.; Hun, X. Molybdenum disulfide/graphdiyne-based photoactive material derived photoelectrochemical strategy for highly sensitive microRNA assay. Sens. Actuators B: Chem. 2019, 297, 126808.

[198]

Wang, H.; Deng, K. Q.; Xiao, J.; Li, C. X.; Zhang, S. W.; Li, X. F. A sandwich-type photoelectrochemical sensor based on tremella-like graphdiyne as photoelectrochemical platform and graphdiyne oxide nanosheets as signal inhibitor. Sens. Actuators B: Chem. 2020, 304, 127363.

[199]

Yew, Y. T.; Sofer, Z.; Mayorga-Martinez, C. C.; Pumersa, M. Black phosphorus nanoparticles as a novel fluorescent sensing platform for nucleic acid detection. Mater. Chem. Fron. 2017, 1, 1130–1136.

[200]

Zhou, J.; Li, Z. J.; Ying, M.; Liu, M. X.; Wang, X. M.; Wang, X. Y.; Cao, L. W.; Zhang, H.; Xu, G. X. Black phosphorus nanosheets for rapid microRNA detection. Nanoscale 2018, 10, 5060–5064.

[201]

Jiang, H. Y.; Xia, Q.; Liu, D. J.; Ling, K. Calcium-cation-doped polydopamine-modified 2D black phosphorus nanosheets as a robust platform for sensitive and specific biomolecule sensing. Anal. Chim. Acta 2020, 1121, 1–10.

[202]

Singh, M. K.; Pal, S.; Verma, A.; Prajapati, Y. K.; Saini, J. P. Highly sensitive antimonene-coated black phosphorous-based surface plasmon-resonance biosensor for DNA hybridization: Design and numerical analysis. J. Nanophotonics 2020, 14, 046015.

[203]

Xue, T. Y.; Liang, W. Y.; Li, Y. W.; Sun, Y. H.; Xiang, Y. J.; Zhang, Y. P.; Dai, Z. G.; Duo, Y.; Wu, L. M.; Qi, K. et al. Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor. Nat. Commun. 2019, 10, 28.

[204]

Mayorga-Martinez, C. C.; Latiff, N. M.; Eng, A. Y. S.; Sofer, Z.; Pumera, M. Black phosphorus nanoparticle labels for immunoassays via hydrogen evolution reaction mediation. Anal. Chem. 2016, 88, 10074–10079.

[205]

Xue, T. Y.; Bongu, S. R.; Huang, H.; Liang, W. Y.; Wang, Y. W.; Zhang, F.; Liu, Z. Y.; Zhang, Y. P.; Zhang, H.; Cui, X. Q. Ultrasensitive detection of microRNA using a bismuthene-enabled fluorescence quenching biosensor. Chem. Commun. 2020, 56, 7041–7044.

[206]

Song, Z.; Ang, W. L.; Sturala, J.; Mazanek, V.; Marvan, P.; Sofer, Z.; Ambrosi, A.; Ding, C. F.; Luo, X. L.; Bonanni, A. Functionalized germanene-based nanomaterials for the detection of single nucleotide polymorphism. ACS Appl. Nano Mater. 2021, 4, 5164–5175.

[207]

Kumar, V.; Brent, J. R.; Shorie, M.; Kaur, H.; Chadha, G.; Thomas, A. G.; Lewis, E. A.; Rooney, A. P.; Nguyen, L.; Zhong, X. L. et al. Nanostructured aptamer-functionalized black phosphorus sensing platform for label-free detection of myoglobin, a cardiovascular disease biomarker. ACS Appl. Mater. Interfaces 2016, 8, 22860–22868.

[208]

Gu, W.; Yan, Y. H.; Pei, X. Y.; Zhang, C. L.; Ding, C. P.; Xian, Y. Z. Fluorescent black phosphorus quantum dots as label-free sensing probes for evaluation of acetylcholinesterase activity. Sens. Actuators B: Chem. 2017, 250, 601–607.

[209]

Peng, J.; Lai, Y. Q.; Chen, Y. Y.; Xu, J.; Sun, L. P.; Weng, J. Sensitive detection of carcinoembryonic antigen using stability-limited few-layer black phosphorus as an electron donor and a reservoir. Small 2017, 13, 1603589.

[210]

Mani, G. K.; Nimura, Y.; Tsuchiya, K. Advanced artificial electronic skin based pH sensing system for heatstroke detection. ACS Sens. 2020, 5, 911–916.

[211]

Fatima, B.; Hussain, D.; Bashir, S.; Hussain, H. T.; Aslam, R.; Nawaz, R.; Rashid, H. N.; Bashir, N.; Majeed, S.; Ashiq, M. N. et al. Catalase immobilized antimonene quantum dots used as an electrochemical biosensor for quantitative determination of H2O2 from CA-125 diagnosed ovarian cancer samples. Mater. Sci. Eng. C: Mater. Biol. Appl. 2020, 117, 111296.

[212]

Du, Y. L.; Ouyang, C. Y.; Shi, S. Q.; Lei, M. S. Ab initio studies on atomic and electronic structures of black phosphorus. J. Appl. Phys. 2010, 107, 093718.

[213]

Lee, H. U.; Park, S. Y.; Lee, S. C.; Choi, S.; Seo, S.; Kim, H.; Won, J.; Choi, K.; Kang, K. S.; Park, H. G. et al. Black phosphorus (BP) nanodots for potential biomedical applications. Small 2016, 12, 214–219.

[214]

Qian, X. Q.; Gu, Z.; Cheng, Y. Two-dimensional black phosphorus nanosheets for theranostic nanomedicine. Mater. Horiz. 2017, 4, 800–816.

[215]

Chen, W. S.; Ouyang, J.; Liu, H.; Chen, M.; Zeng, K.; Sheng, J. P.; Liu, Z. J.; Han, Y. J.; Wang, L. Q.; Li, J. et al. Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer. Adv. Mater. 2017, 29, 1603864.

[216]

Yang, D.; Yang, G. X.; Yang, P. P.; Lv, R. C.; Gai, S. L.; Li, C. X.; He, F.; Lin, J. Assembly of Au plasmonic photothermal agent and iron oxide nanoparticles on ultrathin black phosphorus for targeted photothermal and photodynamic cancer therapy. Adv. Funct. Mater. 2017, 27, 1700371.

[217]

Yan, W. J.; Wang, X. H.; Yao, Q.; Qiao, P. F.; Marion, C. L. Detection of cancer cells based on fluorescence quenching property of black phosphorus. Chin. J. Lasers 2018, 45, 0207030.

Nano Research
Pages 7030-7052
Cite this article:
Duan X, Liu Z, Xie Z, et al. Emerging monoelemental 2D materials (Xenes) for biosensor applications. Nano Research, 2023, 16(5): 7030-7052. https://doi.org/10.1007/s12274-023-5418-3
Topics:

4773

Views

6

Crossref

8

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 18 September 2022
Revised: 18 November 2022
Accepted: 18 December 2022
Published: 20 April 2023
© Tsinghua University Press 2023
Return