AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Two-dimensional CuO nanosheets-induced MOF composites and derivatives for dendrite-free zinc-ion batteries

Guoqiang Yuan1,§Yang-Yi Liu1,2,§Jun Xia3,§Yichun Su1Wenxian Wei1YinBo Zhu3Yang An1HengAn Wu3Qiang Xu4Huan Pang1( )
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
School of Electrical Engineering, Engineering Technology Research Center of Optoelectronic Technology Appliance, Tongling University, Tongling 244061, China
CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
Department of Materials Science and Engineering, SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China

§ Guoqiang Yuan, Yang-Yi Liu, and Jun Xia contributed equally to this work.

Show Author Information

Graphical Abstract

Inspired by electrostatic adsorption, carbon-coated Cu-Zn alloy nanosheets (CuZn@C NSs) were synthesized for the anodes of aqueous zinc-ion batteries (AZIBs). Due to the coexistence of Cu–Zn and Zn–N bonds, CuZn@C NSs anodes exhibit excellent zinc plating/peeling and cycle life in symmetric and half-cells. Low polarization, high capacity retention, and long cycle life were also achieved when CuZn@C NSs were used as anodes in asymmetric cells.

Abstract

Uncontrollable dendrite growth and side reactions resulting in short operating life and low Coulombic efficiency have severely hindered the further development of aqueous zinc-ion batteries (AZIBs). In this work, we designed to grow zeolitic imidazolate framework-8 (ZIF-8) uniformly on CuO nanosheets (NSs) and prepared carbon-coated CuZn alloy NSs (CuZn@C NSs) by calcination under H2/Ar atmosphere. As reflected by extended X-ray absorption fine structure (EXAFS), density functional theory (DFT), and in-situ Raman, the Cu–Zn and Zn–N bonds present in CuZn@C NSs act as zincophilic sites to uniformly absorb Zn ions and inhibit the formation of Zn dendrites. At the same time, CuZn@C NSs hinder the direct contact between zinc anode and electrolyte, preventing the occurrence of side reactions. More impressively, the symmetric cells constructed with CuZn@C NSs anodes exhibited excellent zinc plating/exfoliation performance and long life cycle at different current densities with low voltage hysteresis. In addition, low polarization, high capacity retention, and long cycle life over 1000 cycles at 5 A∙g−1 were achieved when CuZn@C NSs were used as anodes for CuZn@C/V2O5 full cells.

Electronic Supplementary Material

Download File(s)
12274_2022_5424_MOESM1_ESM.pdf (3.1 MB)

References

[1]

Wang, P.; Zhao, D. Y.; Yin, L. W. Two-dimensional matrices confining metal single atoms with enhanced electrochemical reaction kinetics for energy storage applications. Energy Environ. Sci. 2021, 14, 1794–1834.

[2]

Li, Z. H.; Zhang, X.; Cheng, H. F.; Liu, J. W.; Shao, M. F.; Wei, M.; Evans, D. G.; Zhang, H.; Duan, X. Confined synthesis of 2D nanostructured materials toward electrocatalysis. Adv. Energy Mater. 2020, 10, 1900486.

[3]

Li, Z. J.; Zhai, L.; Ge, Y. Y.; Huang, Z. Q.; Shi, Z. Y.; Liu, J. W.; Zhai, W.; Liang, J. Z.; Zhang, H. Wet-chemical synthesis of two-dimensional metal nanomaterials for electrocatalysis. Natl. Sci. Rev. 2022, 9, nwab142.

[4]

Wu, J. J.; Peng, J.; Sun, H. F.; Guo, Y. Q.; Liu, H. F.; Wu, C. Z.; Xie, Y. Host–guest intercalation chemistry for the synthesis and modification of two-dimensional transition metal dichalcogenides. Adv. Mater. 2022, 34, 2200425.

[5]

Zhai, W.; Xiong, T. F.; He, Z.; Lu, S. Y.; Lai, Z. C.; He, Q. Y.; Tan, C. L.; Zhang, H. Nanodots derived from layered materials: Synthesis and applications. Adv. Mater. 2021, 33, 2006661.

[6]

Li, S. Z.; Yang, K.; Tan, C. L.; Huang, X.; Huang, W.; Zhang, H. Preparation and applications of novel composites composed of metal–organic frameworks and two-dimensional materials. Chem. Commun. 2016, 52, 1555–1562.

[7]

Zhang, S. L.; Ying, H. J.; Huang, P. F.; Wang, J. L.; Zhang, Z.; Yang, T. T.; Han, W. Q. Rational design of pillared SnS/Ti3C2Tx MXene for superior lithium-ion storage. ACS Nano 2020, 14, 17665–17674.

[8]

Liu, C. L.; Bai, Y.; Li, W. T.; Yang, F. Y.; Zhang, G. X.; Pang, H. In situ growth of three-dimensional MXene/metal–organic framework composites for high-performance supercapacitors. Angew. Chem., Int. Ed. 2022, 61, e202116282.

[9]

Wang, Q.; Astruc, D. State of the art and prospects in metal–organic framework (MOF)-based and MOF-derived nanocatalysis. Chem. Rev. 2020, 120, 1438–1511.

[10]

Chen, Z.; Wang, R.; Ma, T.; Wang, J. L.; Duan, Y.; Dai, Z. Z.; Xu, J.; Wang, H. J.; Yuan, J. Y.; Jiang, H. L. et al. Large-area crystalline zeolitic imidazolate framework thin films. Angew. Chem., Int. Ed. 2021, 60, 14124–14130.

[11]

Xu, Y. X.; Li, Q.; Xue, H. G.; Pang, H. Metal–organic frameworks for direct electrochemical applications. Coord. Chem. Rev. 2018, 376, 292–318.

[12]

Du, M.; Li, Q.; Zhao, Y.; Liu, C. S.; Pang, H. A review of electrochemical energy storage behaviors based on pristine metal–organic frameworks and their composites. Coord. Chem. Rev. 2020, 416, 213341.

[13]

Zhu, B. J.; Wen, D. S.; Liang, Z. B.; Zou, R. Q. Conductive metal–organic frameworks for electrochemical energy conversion and storage. Coord. Chem. Rev. 2021, 446, 214119.

[14]

Qiu, T. J.; Gao, S.; Liang, Z. B.; Wang, D. G.; Tabassum, H.; Zhong, R. Q.; Zou, R. Q. Pristine hollow metal–organic frameworks: Design, synthesis, and application. Angew. Chem., Int. Ed. 2021, 60, 17314–17336.

[15]

Zhang, Y.; Jiao, L.; Yang, W. J.; Xie, C. F.; Jiang, H. L. Rational fabrication of low-coordinate single-atom Ni electrocatalysts by MOFs for highly selective CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 7607–7611.

[16]

Shi, Y. X.; Zhu, B. B.; Guo, X. T.; Li, W. T.; Ma, W. Z.; Wu, X. Y.; Pang, H. MOF-derived metal sulfides for electrochemical energy applications. Energy Storage Mater. 2022, 51, 840–872.

[17]

Zhao, M. T.; Huang, Y.; Peng, Y. W.; Huang, Z. Q.; Ma, Q. L.; Zhang, H. Two-dimensional metal–organic framework nanosheets: Synthesis and applications. Chem. Soc. Rev. 2018, 47, 6267–6295.

[18]

Li, W. T.; Guo, X. T.; Geng, P. B.; Du, M.; Jing, Q. L.; Chen, X. D.; Zhang, G. X.; Li, H. P.; Xu, Q.; Braunstein, P. et al. Rational design and general synthesis of multimetallic metal–organic framework nano-octahedra for enhanced Li-S battery. Adv. Mater. 2021, 33, 2105163.

[19]

Geng, P. B.; Wang, L.; Du, M.; Bai, Y.; Li, W. T.; Liu, Y. F.; Chen, S. Q.; Braunstein, P.; Xu, Q.; Pang, H. MIL-96-Al for Li-S batteries: Shape or size? Adv. Mater. 2022, 34, 2107836.

[20]

Chen, T. T.; Wang, F. F.; Cao, S.; Bai, Y.; Zheng, S. S.; Li, W. T.; Zhang, S. T.; Hu, S. X.; Pang, H. In situ synthesis of MOF-74 family for high areal energy density of aqueous nickel-zinc batteries. Adv. Mater. 2022, 34, 2201779.

[21]

Xiao, X.; Zou, L. L.; Pang, H.; Xu, Q. Synthesis of micro/nanoscaled metal–organic frameworks and their direct electrochemical applications. Chem. Soc. Rev. 2020, 49, 301–331.

[22]

Du, R.; Wu, Y. F.; Yang, Y. C.; Zhai, T. T.; Zhou, T.; Shang, Q. Y.; Zhu, L. H.; Shang, C. X.; Guo, Z. X. Porosity engineering of MOF-based materials for electrochemical energy storage. Adv. Energy Mater. 2021, 11, 2100154.

[23]

Tan, H.; Zhou, Y.; Qiao, S. Z.; Fan, H. J. Metal organic framework (MOF) in aqueous energy devices. Mater. Today 2021, 48, 270–284.

[24]

Zhou, Y.; Wang, C.; Chen, F. R.; Wang, T. J.; Ni, Y. Y.; Sun, H. X.; Yu, N.; Geng, B. Y. Synchronous constructing ion channels and confined space of Co3O4 anode for high-performance lithium-ion batteries. Nano Res. 2022, 15, 6192–6199.

[25]

Liu, B.; Shioyama, H.; Akita, T.; Xu, Q. Metal–organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 2008, 130, 5390–5391.

[26]

Liu, Y. Y.; Zhang, H. P.; Zhu, B.; Zhang, H. W.; Fan, L. D.; Chai, X. Y.; Zhang, Q. L.; Liu, J. H.; He, C. X. C/N-Co-doped Pd coated Ag nanowires as a high-performance electrocatalyst for hydrogen evolution reaction. Electrochim. Acta 2018, 283, 221–227.

[27]

Fang, G. Z.; Zhou, J.; Pan, A. Q.; Liang, S. Q. Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 2018, 3, 2480–2501.

[28]

Xu, C. J.; Li, B. H.; Du, H. D.; Kang, F. Y. Energetic zinc ion chemistry: The rechargeable zinc ion battery. Angew. Chem., Int. Ed. 2012, 51, 933–935.

[29]

Jia, X. X.; Liu, C. F.; Neale, Z. G.; Yang, J. H.; Cao, G. Z. Active materials for aqueous zinc ion batteries: Synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 2020, 120, 7795–7866.

[30]

Wang, Y. R.; Wang, C. X.; Ni, Z. G.; Gu, Y. M.; Wang, B. L.; Guo, Z. W.; Wang, Z.; Bin, D.; Ma, J.; Wang, Y. G. Binding zinc ions by carboxyl groups from adjacent molecules toward long-life aqueous zinc-organic batteries. Adv. Mater. 2020, 32, 2000338.

[31]

Wang, N.; Dong, X. L.; Wang, B. L.; Guo, Z. W.; Wang, Z.; Wang, R. H.; Qiu, X.; Wang, Y. G. Zinc-organic battery with a wide operation-temperature window from –70 to 150 °C. Angew. Chem., Int. Ed. 2020, 59, 14577–14583.

[32]
Chen, F. R.; Wang, Q. R.; Yang, X. F.; Wang, C.; Zang, H.; Tang, Y. W.; Li, T.; Geng, B. Y. Construction of hollow mesoporous ZnMn2O4/C microspheres with carbon nanotubes embedded in shells for high-performance aqueous zinc ions batteries. Nano Res., in press, https://doi.org/10.1007/s12274-022-4772-x.
[33]

Zhou, Y.; Wang, C.; Chen, F. R.; Wang, T. J.; Ni, Y. Y.; Yu, N.; Geng, B. Y. Scalable fabrication of NiCoMnO4 yolk–shell microspheres with gradient oxygen vacancies for high-performance aqueous zinc ion batteries. J. Colloid Interface Sci. 2022, 626, 314–323.

[34]

Wang, T. T.; Li, C. P.; Xie, X. S.; Lu, B. G.; He, Z. X.; Liang, S. Q.; Zhou, J. Anode materials for aqueous zinc ion batteries: Mechanisms, properties, and perspectives. ACS Nano 2020, 14, 16321–16347.

[35]

Zheng, J. X.; Zhao, Q.; Tang, T.; Yin, J. F.; Quilty, C. D.; Renderos, G. D.; Liu, X. T.; Deng, Y.; Wang, L.; Bock, D. C. et al. Reversible epitaxial electrodeposition of metals in battery anodes. Science 2019, 366, 645–648.

[36]

Zhang, Q.; Luan, J. Y.; Tang, Y. G.; Ji, X. B.; Wang, H. Y. Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 13180–13191.

[37]

Du, W. C.; Ang, E. H.; Yang, Y.; Zhang, Y. F.; Ye, M. H.; Li, C. C. Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 2020, 13, 3330–3360.

[38]

Yang, Q.; Li, Q.; Liu, Z. X.; Wang, D. H.; Guo, Y.; Li, X. L.; Tang, Y. C.; Li, H. F.; Dong, B. B.; Zhi, C. Y. Dendrites in Zn-based batteries. Adv. Mater. 2020, 32, 2001854.

[39]

Xiong, P. X.; Zhang, Y.; Zhang, J. R.; Baek, S. H.; Zeng, L. X.; Yao, Y.; Park, H. S. Recent progress of artificial interfacial layers in aqueous Zn metal batteries. EnergyChem 2022, 4, 100076.

[40]

Li, C. P.; Shi, X. D.; Liang, S. Q.; Ma, X. M.; Han, M. M.; Wu, X. W.; Zhou, J. Spatially homogeneous copper foam as surface dendrite-free host for zinc metal anode. Chem. Eng. J. 2020, 379, 122248.

[41]

Kang, Z.; Wu, C. L.; Dong, L. B.; Liu, W. B.; Mou, J.; Zhang, J. W.; Chang, Z. W.; Jiang, B. Z.; Wang, G. X.; Kang, F. Y. et al. 3D porous copper skeleton supported zinc anode toward high capacity and long cycle life zinc ion batteries. ACS Sustainable Chem. Eng. 2019, 7, 3364–3371.

[42]

Zhang, Q.; Luan, J. Y.; Huang, X. B.; Wang, Q.; Sun, D.; Tang, Y. E.; Ji, X. B.; Wang, H. Y. Revealing the role of crystal orientation of protective layers for stable zinc anode. Nat. Commun. 2020, 11, 3961.

[43]

Cui, Y. H.; Zhao, Q. H.; Wu, X. J.; Chen, X.; Yang, J. L.; Wang, Y. T.; Qin, R. Z.; Ding, S. X.; Song, Y. J.; Wu, J. W. et al. An interface-bridged organic–inorganic layer that suppresses dendrite formation and side reactions for ultra-long-life aqueous zinc metal anodes. Angew. Chem., Int. Ed. 2020, 59, 16594–16601.

[44]

Zeng, Y. X.; Zhang, X. Y.; Qin, R. F.; Liu, X. Q.; Fang, P. P.; Zheng, D. Z.; Tong, Y. X.; Lu, X. H. Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv. Mater. 2019, 31, 1903675.

[45]

Liu, X. Q.; Yang, F.; Xu, W.; Zeng, Y. X.; He, J. J.; Lu, X. H. Zeolitic imidazolate frameworks as Zn2+ modulation layers to enable dendrite-free Zn anodes. Adv. Sci. 2020, 7, 2002173.

[46]

Kang, L. T.; Cui, M. W.; Jiang, F. Y.; Gao, Y. F.; Luo, H. J.; Liu, J. J.; Liang, W.; Zhi, C. Y. Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 2018, 8, 1801090.

[47]

Du, H. R.; Zhao, R. R.; Yang, Y.; Liu, Z. K.; Qie, L.; Huang, Y. H. High-capacity and long-life zinc electrodeposition enabled by a self-healable and desolvation shield for aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2022, 61, e202114789.

[48]

Yuksel, R.; Buyukcakir, O.; Seong, W. K.; Ruoff, R. S. Metal–organic framework integrated anodes for aqueous zinc-ion batteries. Adv. Energy Mater. 2020, 10, 1904215.

[49]

Yu, H.; Zeng, Y. X.; Li, N. W.; Luan, D. Y.; Yu, L.; Lou, X. W. Confining Sn nanoparticles in interconnected N-doped hollow carbon spheres as hierarchical zincophilic fibers for dendrite-Free Zn metal anodes. Sci. Adv. 2022, 8, eabm5766.

[50]

Xiong, P. X.; Kang, Y. B.; Yuan, H. C.; Liu, Q.; Baek, S. H.; Park, J. M.; Dou, Q. Y.; Han, X. T.; Jang, W. S.; Kwon, S. J. et al. Galvanically replaced artificial interfacial layer for highly reversible zinc metal anodes. Appl. Phys. Rev. 2022, 9, 011401.

[51]

Feng, D. D.; Cao, F. Q.; Hou, L.; Li, T. Y.; Jiao, Y. C.; Wu, P. Y. Immunizing aqueous Zn batteries against dendrite formation and side reactions at various temperatures via electrolyte additives. Small 2021, 17, 2103195.

[52]

Hao, J. N.; Yuan, L. B.; Ye, C.; Chao, D. L.; Davey, K.; Guo, Z. P.; Qiao, S. Z. Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew. Chem., Int. Ed. 2021, 60, 7366–7375.

[53]

Zhang, Q.; Luan, J. Y.; Fu, L.; Wu, S. A.; Tang, Y. G.; Ji, X. B.; Wang, H. Y. The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew. Chem., Int. Ed. 2019, 58, 15841–15847.

[54]

Wang, S. B.; Ran, Q.; Yao, R. Q.; Shi, H.; Wen, Z.; Zhao, M.; Lang, X. Y.; Jiang, Q. Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nat. Commun. 2020, 11, 1634.

[55]

Han, D. L.; Wu, S. C.; Zhang, S. W.; Deng, Y. Q.; Cui, C. J.; Zhang, L. N.; Long, Y.; Li, H.; Tao, Y.; Weng, Z. et al. A corrosion-resistant and dendrite-free zinc metal anode in aqueous systems. Small 2020, 16, 2001736.

[56]

Liu, B. T.; Wang, S. J.; Wang, Z. L.; Lei, H.; Chen, Z. T.; Mai, W. J. Novel 3D nanoporous Zn-Cu alloy as long-life anode toward high-voltage double electrolyte aqueous zinc-ion batteries. Small 2020, 16, 2001323.

[57]

An, Y. L.; Tian, Y.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Scalable and controllable synthesis of interface-engineered nanoporous host for dendrite-free and high rate zinc metal batteries. ACS Nano 2021, 15, 11828–11842.

[58]

Zhou, J. H.; Xie, M.; Wu, F.; Mei, Y.; Hao, Y. T.; Huang, R. L.; Wei, G. L.; Liu, A. N.; Li, L.; Chen, R. J. Ultrathin surface coating of nitrogen-doped graphene enables stable zinc anodes for aqueous zinc-ion batteries. Adv. Mater. 2021, 33, 2101649.

[59]

Wang, Z.; Huang, J. H.; Guo, Z. W.; Dong, X. L.; Liu, Y.; Wang, Y. G.; Xia, Y. Y. A metal–organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 2019, 3, 1289–1300.

[60]

Yan, Y. X.; Chen, G. R.; She, P. H.; Zhong, G. Y.; Yan, W. F.; Guan, B. Y.; Yamauchi, Y. Mesoporous nanoarchitectures for electrochemical energy conversion and storage. Adv. Mater. 2020, 32, 2004654.

[61]

Wang, J.; Chang, Z.; Ding, B.; Li, T.; Yang, G. L.; Pang, Z. B.; Nakato, T.; Eguchi, M.; Kang, Y. M.; Na, J. et al. Universal access to two-dimensional mesoporous heterostructures by micelle-directed interfacial assembly. Angew. Chem., Int. Ed. 2020, 59, 19570–19575.

[62]

Shan, Y. Y.; Chen, L. Y.; Pang, H.; Xu, Q. Metal–organic framework-based hybrid frameworks. Small Struct. 2021, 2, 2000078.

[63]

Chen, K. F.; Wang, X. L.; Hu, W. H.; Kong, Q. Q.; Pang, H.; Xu, Q. Modified metal–organic frameworks for electrochemical applications. Small Struct. 2022, 3, 2100200.

[64]

Kaneti, Y. V.; Dutta, S.; Hossain, M. S. A.; Shiddiky, M. J. A.; Tung, K. L.; Shieh, F. K.; Tsung, C. K.; Wu, K. C. W.; Yamauchi, Y. Strategies for improving the functionality of zeolitic imidazolate frameworks: Tailoring nanoarchitectures for functional applications. Adv. Mater. 2017, 29, 1700213.

[65]

Pei, C. G.; Choi, M. S.; Yu, X.; Xue, H. G.; Xia, B. Y.; Park, H. S. Recent progress in emerging metal and covalent organic frameworks for electrochemical and functional capacitors. J. Mater. Chem. A 2021, 9, 8832–8869.

[66]

Yang, F.; Deng, P. L.; Wang, Q. Y.; Zhu, J. X.; Yan, Y.; Zhou, L.; Qi, K.; Liu, H. F.; Park, H. S.; Xia, B. Y. Metal–organic framework-derived cupric oxide polycrystalline nanowires for selective carbon dioxide electroreduction to C2 valuables. J. Mater. Chem. A 2020, 8, 12418–12423.

[67]

Takele Menisa, L.; Cheng, P.; Long, C.; Qiu, X. Y.; Zheng, Y. L.; Han, J. Y.; Zhang, Y.; Gao, Y.; Tang, Z. Y. Insight into atomically dispersed porous M-N-C single-site catalysts for electrochemical CO2 reduction. Nanoscale 2020, 12, 16617–16626.

[68]

Hu, X. S.; Zhao, C. Y.; Hu, X.; Guan, Q. X.; Wang, Y. L.; Li, W. Nitrogen-doped carbon cages encapsulating CuZn alloy for enhanced CO2 reduction. ACS Appl. Mater. Interfaces 2019, 11, 25100–25107.

[69]

Wan, L.; Shamsaei, E.; Easton, C. D.; Yu, D. B.; Liang, Y.; Chen, X. F.; Abbasi, Z.; Akbari, A.; Zhang, X. W.; Wang, H. T. ZIF-8 derived nitrogen-doped porous carbon/carbon nanotube composite for high-performance supercapacitor. Carbon 2017, 121, 330–336.

[70]

Xie, F. X.; Li, H.; Wang, X. S.; Zhi, X.; Chao, D. L.; Davey, K.; Qiao, S. Z. Mechanism for zincophilic sites on zinc-metal anode hosts in aqueous batteries. Adv. Energy Mater. 2021, 11, 2003419.

[71]

Zhao, Z. M.; Zhao, J. W.; Hu, Z. L.; Li, J. D.; Li, J. J.; Zhang, Y. J.; Wang, C.; Cui, G. L. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 2019, 12, 1938–1949.

[72]

Jiao, S. Q.; Fu, J. M.; Wu, M. Z.; Hua, T.; Hu, H. B. Ion sieve: Tailoring Zn2+ desolvation kinetics and flux toward dendrite-free metallic zinc anodes. ACS Nano 2022, 16, 1013–1024.

[73]

Yan, M. Y.; He, P.; Chen, Y.; Wang, S. Y.; Wei, Q. L.; Zhao, K. N.; Xu, X.; An, Q. Y.; Shuang, Y.; Shao, Y. Y. et al. Water-lubricated intercalation in V2O5nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv. Mater. 2018, 30, 1703725.

Nano Research
Pages 6881-6889
Cite this article:
Yuan G, Liu Y-Y, Xia J, et al. Two-dimensional CuO nanosheets-induced MOF composites and derivatives for dendrite-free zinc-ion batteries. Nano Research, 2023, 16(5): 6881-6889. https://doi.org/10.1007/s12274-023-5424-x
Topics:

1323

Views

13

Crossref

12

Web of Science

12

Scopus

0

CSCD

Altmetrics

Received: 23 October 2022
Revised: 24 November 2022
Accepted: 18 December 2022
Published: 03 February 2023
© Tsinghua University Press 2023
Return