Graphical Abstract

Uncontrollable dendrite growth and side reactions resulting in short operating life and low Coulombic efficiency have severely hindered the further development of aqueous zinc-ion batteries (AZIBs). In this work, we designed to grow zeolitic imidazolate framework-8 (ZIF-8) uniformly on CuO nanosheets (NSs) and prepared carbon-coated CuZn alloy NSs (CuZn@C NSs) by calcination under H2/Ar atmosphere. As reflected by extended X-ray absorption fine structure (EXAFS), density functional theory (DFT), and in-situ Raman, the Cu–Zn and Zn–N bonds present in CuZn@C NSs act as zincophilic sites to uniformly absorb Zn ions and inhibit the formation of Zn dendrites. At the same time, CuZn@C NSs hinder the direct contact between zinc anode and electrolyte, preventing the occurrence of side reactions. More impressively, the symmetric cells constructed with CuZn@C NSs anodes exhibited excellent zinc plating/exfoliation performance and long life cycle at different current densities with low voltage hysteresis. In addition, low polarization, high capacity retention, and long cycle life over 1000 cycles at 5 A∙g−1 were achieved when CuZn@C NSs were used as anodes for CuZn@C/V2O5 full cells.
Wang, P.; Zhao, D. Y.; Yin, L. W. Two-dimensional matrices confining metal single atoms with enhanced electrochemical reaction kinetics for energy storage applications. Energy Environ. Sci. 2021, 14, 1794–1834.
Li, Z. H.; Zhang, X.; Cheng, H. F.; Liu, J. W.; Shao, M. F.; Wei, M.; Evans, D. G.; Zhang, H.; Duan, X. Confined synthesis of 2D nanostructured materials toward electrocatalysis. Adv. Energy Mater. 2020, 10, 1900486.
Li, Z. J.; Zhai, L.; Ge, Y. Y.; Huang, Z. Q.; Shi, Z. Y.; Liu, J. W.; Zhai, W.; Liang, J. Z.; Zhang, H. Wet-chemical synthesis of two-dimensional metal nanomaterials for electrocatalysis. Natl. Sci. Rev. 2022, 9, nwab142.
Wu, J. J.; Peng, J.; Sun, H. F.; Guo, Y. Q.; Liu, H. F.; Wu, C. Z.; Xie, Y. Host–guest intercalation chemistry for the synthesis and modification of two-dimensional transition metal dichalcogenides. Adv. Mater. 2022, 34, 2200425.
Zhai, W.; Xiong, T. F.; He, Z.; Lu, S. Y.; Lai, Z. C.; He, Q. Y.; Tan, C. L.; Zhang, H. Nanodots derived from layered materials: Synthesis and applications. Adv. Mater. 2021, 33, 2006661.
Li, S. Z.; Yang, K.; Tan, C. L.; Huang, X.; Huang, W.; Zhang, H. Preparation and applications of novel composites composed of metal–organic frameworks and two-dimensional materials. Chem. Commun. 2016, 52, 1555–1562.
Zhang, S. L.; Ying, H. J.; Huang, P. F.; Wang, J. L.; Zhang, Z.; Yang, T. T.; Han, W. Q. Rational design of pillared SnS/Ti3C2Tx MXene for superior lithium-ion storage. ACS Nano 2020, 14, 17665–17674.
Liu, C. L.; Bai, Y.; Li, W. T.; Yang, F. Y.; Zhang, G. X.; Pang, H. In situ growth of three-dimensional MXene/metal–organic framework composites for high-performance supercapacitors. Angew. Chem., Int. Ed. 2022, 61, e202116282.
Wang, Q.; Astruc, D. State of the art and prospects in metal–organic framework (MOF)-based and MOF-derived nanocatalysis. Chem. Rev. 2020, 120, 1438–1511.
Chen, Z.; Wang, R.; Ma, T.; Wang, J. L.; Duan, Y.; Dai, Z. Z.; Xu, J.; Wang, H. J.; Yuan, J. Y.; Jiang, H. L. et al. Large-area crystalline zeolitic imidazolate framework thin films. Angew. Chem., Int. Ed. 2021, 60, 14124–14130.
Xu, Y. X.; Li, Q.; Xue, H. G.; Pang, H. Metal–organic frameworks for direct electrochemical applications. Coord. Chem. Rev. 2018, 376, 292–318.
Du, M.; Li, Q.; Zhao, Y.; Liu, C. S.; Pang, H. A review of electrochemical energy storage behaviors based on pristine metal–organic frameworks and their composites. Coord. Chem. Rev. 2020, 416, 213341.
Zhu, B. J.; Wen, D. S.; Liang, Z. B.; Zou, R. Q. Conductive metal–organic frameworks for electrochemical energy conversion and storage. Coord. Chem. Rev. 2021, 446, 214119.
Qiu, T. J.; Gao, S.; Liang, Z. B.; Wang, D. G.; Tabassum, H.; Zhong, R. Q.; Zou, R. Q. Pristine hollow metal–organic frameworks: Design, synthesis, and application. Angew. Chem., Int. Ed. 2021, 60, 17314–17336.
Zhang, Y.; Jiao, L.; Yang, W. J.; Xie, C. F.; Jiang, H. L. Rational fabrication of low-coordinate single-atom Ni electrocatalysts by MOFs for highly selective CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 7607–7611.
Shi, Y. X.; Zhu, B. B.; Guo, X. T.; Li, W. T.; Ma, W. Z.; Wu, X. Y.; Pang, H. MOF-derived metal sulfides for electrochemical energy applications. Energy Storage Mater. 2022, 51, 840–872.
Zhao, M. T.; Huang, Y.; Peng, Y. W.; Huang, Z. Q.; Ma, Q. L.; Zhang, H. Two-dimensional metal–organic framework nanosheets: Synthesis and applications. Chem. Soc. Rev. 2018, 47, 6267–6295.
Li, W. T.; Guo, X. T.; Geng, P. B.; Du, M.; Jing, Q. L.; Chen, X. D.; Zhang, G. X.; Li, H. P.; Xu, Q.; Braunstein, P. et al. Rational design and general synthesis of multimetallic metal–organic framework nano-octahedra for enhanced Li-S battery. Adv. Mater. 2021, 33, 2105163.
Geng, P. B.; Wang, L.; Du, M.; Bai, Y.; Li, W. T.; Liu, Y. F.; Chen, S. Q.; Braunstein, P.; Xu, Q.; Pang, H. MIL-96-Al for Li-S batteries: Shape or size? Adv. Mater. 2022, 34, 2107836.
Chen, T. T.; Wang, F. F.; Cao, S.; Bai, Y.; Zheng, S. S.; Li, W. T.; Zhang, S. T.; Hu, S. X.; Pang, H. In situ synthesis of MOF-74 family for high areal energy density of aqueous nickel-zinc batteries. Adv. Mater. 2022, 34, 2201779.
Xiao, X.; Zou, L. L.; Pang, H.; Xu, Q. Synthesis of micro/nanoscaled metal–organic frameworks and their direct electrochemical applications. Chem. Soc. Rev. 2020, 49, 301–331.
Du, R.; Wu, Y. F.; Yang, Y. C.; Zhai, T. T.; Zhou, T.; Shang, Q. Y.; Zhu, L. H.; Shang, C. X.; Guo, Z. X. Porosity engineering of MOF-based materials for electrochemical energy storage. Adv. Energy Mater. 2021, 11, 2100154.
Tan, H.; Zhou, Y.; Qiao, S. Z.; Fan, H. J. Metal organic framework (MOF) in aqueous energy devices. Mater. Today 2021, 48, 270–284.
Zhou, Y.; Wang, C.; Chen, F. R.; Wang, T. J.; Ni, Y. Y.; Sun, H. X.; Yu, N.; Geng, B. Y. Synchronous constructing ion channels and confined space of Co3O4 anode for high-performance lithium-ion batteries. Nano Res. 2022, 15, 6192–6199.
Liu, B.; Shioyama, H.; Akita, T.; Xu, Q. Metal–organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 2008, 130, 5390–5391.
Liu, Y. Y.; Zhang, H. P.; Zhu, B.; Zhang, H. W.; Fan, L. D.; Chai, X. Y.; Zhang, Q. L.; Liu, J. H.; He, C. X. C/N-Co-doped Pd coated Ag nanowires as a high-performance electrocatalyst for hydrogen evolution reaction. Electrochim. Acta 2018, 283, 221–227.
Fang, G. Z.; Zhou, J.; Pan, A. Q.; Liang, S. Q. Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 2018, 3, 2480–2501.
Xu, C. J.; Li, B. H.; Du, H. D.; Kang, F. Y. Energetic zinc ion chemistry: The rechargeable zinc ion battery. Angew. Chem., Int. Ed. 2012, 51, 933–935.
Jia, X. X.; Liu, C. F.; Neale, Z. G.; Yang, J. H.; Cao, G. Z. Active materials for aqueous zinc ion batteries: Synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 2020, 120, 7795–7866.
Wang, Y. R.; Wang, C. X.; Ni, Z. G.; Gu, Y. M.; Wang, B. L.; Guo, Z. W.; Wang, Z.; Bin, D.; Ma, J.; Wang, Y. G. Binding zinc ions by carboxyl groups from adjacent molecules toward long-life aqueous zinc-organic batteries. Adv. Mater. 2020, 32, 2000338.
Wang, N.; Dong, X. L.; Wang, B. L.; Guo, Z. W.; Wang, Z.; Wang, R. H.; Qiu, X.; Wang, Y. G. Zinc-organic battery with a wide operation-temperature window from –70 to 150 °C. Angew. Chem., Int. Ed. 2020, 59, 14577–14583.
Zhou, Y.; Wang, C.; Chen, F. R.; Wang, T. J.; Ni, Y. Y.; Yu, N.; Geng, B. Y. Scalable fabrication of NiCoMnO4 yolk–shell microspheres with gradient oxygen vacancies for high-performance aqueous zinc ion batteries. J. Colloid Interface Sci. 2022, 626, 314–323.
Wang, T. T.; Li, C. P.; Xie, X. S.; Lu, B. G.; He, Z. X.; Liang, S. Q.; Zhou, J. Anode materials for aqueous zinc ion batteries: Mechanisms, properties, and perspectives. ACS Nano 2020, 14, 16321–16347.
Zheng, J. X.; Zhao, Q.; Tang, T.; Yin, J. F.; Quilty, C. D.; Renderos, G. D.; Liu, X. T.; Deng, Y.; Wang, L.; Bock, D. C. et al. Reversible epitaxial electrodeposition of metals in battery anodes. Science 2019, 366, 645–648.
Zhang, Q.; Luan, J. Y.; Tang, Y. G.; Ji, X. B.; Wang, H. Y. Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 13180–13191.
Du, W. C.; Ang, E. H.; Yang, Y.; Zhang, Y. F.; Ye, M. H.; Li, C. C. Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 2020, 13, 3330–3360.
Yang, Q.; Li, Q.; Liu, Z. X.; Wang, D. H.; Guo, Y.; Li, X. L.; Tang, Y. C.; Li, H. F.; Dong, B. B.; Zhi, C. Y. Dendrites in Zn-based batteries. Adv. Mater. 2020, 32, 2001854.
Xiong, P. X.; Zhang, Y.; Zhang, J. R.; Baek, S. H.; Zeng, L. X.; Yao, Y.; Park, H. S. Recent progress of artificial interfacial layers in aqueous Zn metal batteries. EnergyChem 2022, 4, 100076.
Li, C. P.; Shi, X. D.; Liang, S. Q.; Ma, X. M.; Han, M. M.; Wu, X. W.; Zhou, J. Spatially homogeneous copper foam as surface dendrite-free host for zinc metal anode. Chem. Eng. J. 2020, 379, 122248.
Kang, Z.; Wu, C. L.; Dong, L. B.; Liu, W. B.; Mou, J.; Zhang, J. W.; Chang, Z. W.; Jiang, B. Z.; Wang, G. X.; Kang, F. Y. et al. 3D porous copper skeleton supported zinc anode toward high capacity and long cycle life zinc ion batteries. ACS Sustainable Chem. Eng. 2019, 7, 3364–3371.
Zhang, Q.; Luan, J. Y.; Huang, X. B.; Wang, Q.; Sun, D.; Tang, Y. E.; Ji, X. B.; Wang, H. Y. Revealing the role of crystal orientation of protective layers for stable zinc anode. Nat. Commun. 2020, 11, 3961.
Cui, Y. H.; Zhao, Q. H.; Wu, X. J.; Chen, X.; Yang, J. L.; Wang, Y. T.; Qin, R. Z.; Ding, S. X.; Song, Y. J.; Wu, J. W. et al. An interface-bridged organic–inorganic layer that suppresses dendrite formation and side reactions for ultra-long-life aqueous zinc metal anodes. Angew. Chem., Int. Ed. 2020, 59, 16594–16601.
Zeng, Y. X.; Zhang, X. Y.; Qin, R. F.; Liu, X. Q.; Fang, P. P.; Zheng, D. Z.; Tong, Y. X.; Lu, X. H. Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv. Mater. 2019, 31, 1903675.
Liu, X. Q.; Yang, F.; Xu, W.; Zeng, Y. X.; He, J. J.; Lu, X. H. Zeolitic imidazolate frameworks as Zn2+ modulation layers to enable dendrite-free Zn anodes. Adv. Sci. 2020, 7, 2002173.
Kang, L. T.; Cui, M. W.; Jiang, F. Y.; Gao, Y. F.; Luo, H. J.; Liu, J. J.; Liang, W.; Zhi, C. Y. Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 2018, 8, 1801090.
Du, H. R.; Zhao, R. R.; Yang, Y.; Liu, Z. K.; Qie, L.; Huang, Y. H. High-capacity and long-life zinc electrodeposition enabled by a self-healable and desolvation shield for aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2022, 61, e202114789.
Yuksel, R.; Buyukcakir, O.; Seong, W. K.; Ruoff, R. S. Metal–organic framework integrated anodes for aqueous zinc-ion batteries. Adv. Energy Mater. 2020, 10, 1904215.
Yu, H.; Zeng, Y. X.; Li, N. W.; Luan, D. Y.; Yu, L.; Lou, X. W. Confining Sn nanoparticles in interconnected N-doped hollow carbon spheres as hierarchical zincophilic fibers for dendrite-Free Zn metal anodes. Sci. Adv. 2022, 8, eabm5766.
Xiong, P. X.; Kang, Y. B.; Yuan, H. C.; Liu, Q.; Baek, S. H.; Park, J. M.; Dou, Q. Y.; Han, X. T.; Jang, W. S.; Kwon, S. J. et al. Galvanically replaced artificial interfacial layer for highly reversible zinc metal anodes. Appl. Phys. Rev. 2022, 9, 011401.
Feng, D. D.; Cao, F. Q.; Hou, L.; Li, T. Y.; Jiao, Y. C.; Wu, P. Y. Immunizing aqueous Zn batteries against dendrite formation and side reactions at various temperatures via electrolyte additives. Small 2021, 17, 2103195.
Hao, J. N.; Yuan, L. B.; Ye, C.; Chao, D. L.; Davey, K.; Guo, Z. P.; Qiao, S. Z. Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew. Chem., Int. Ed. 2021, 60, 7366–7375.
Zhang, Q.; Luan, J. Y.; Fu, L.; Wu, S. A.; Tang, Y. G.; Ji, X. B.; Wang, H. Y. The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew. Chem., Int. Ed. 2019, 58, 15841–15847.
Wang, S. B.; Ran, Q.; Yao, R. Q.; Shi, H.; Wen, Z.; Zhao, M.; Lang, X. Y.; Jiang, Q. Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nat. Commun. 2020, 11, 1634.
Han, D. L.; Wu, S. C.; Zhang, S. W.; Deng, Y. Q.; Cui, C. J.; Zhang, L. N.; Long, Y.; Li, H.; Tao, Y.; Weng, Z. et al. A corrosion-resistant and dendrite-free zinc metal anode in aqueous systems. Small 2020, 16, 2001736.
Liu, B. T.; Wang, S. J.; Wang, Z. L.; Lei, H.; Chen, Z. T.; Mai, W. J. Novel 3D nanoporous Zn-Cu alloy as long-life anode toward high-voltage double electrolyte aqueous zinc-ion batteries. Small 2020, 16, 2001323.
An, Y. L.; Tian, Y.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Scalable and controllable synthesis of interface-engineered nanoporous host for dendrite-free and high rate zinc metal batteries. ACS Nano 2021, 15, 11828–11842.
Zhou, J. H.; Xie, M.; Wu, F.; Mei, Y.; Hao, Y. T.; Huang, R. L.; Wei, G. L.; Liu, A. N.; Li, L.; Chen, R. J. Ultrathin surface coating of nitrogen-doped graphene enables stable zinc anodes for aqueous zinc-ion batteries. Adv. Mater. 2021, 33, 2101649.
Wang, Z.; Huang, J. H.; Guo, Z. W.; Dong, X. L.; Liu, Y.; Wang, Y. G.; Xia, Y. Y. A metal–organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 2019, 3, 1289–1300.
Yan, Y. X.; Chen, G. R.; She, P. H.; Zhong, G. Y.; Yan, W. F.; Guan, B. Y.; Yamauchi, Y. Mesoporous nanoarchitectures for electrochemical energy conversion and storage. Adv. Mater. 2020, 32, 2004654.
Wang, J.; Chang, Z.; Ding, B.; Li, T.; Yang, G. L.; Pang, Z. B.; Nakato, T.; Eguchi, M.; Kang, Y. M.; Na, J. et al. Universal access to two-dimensional mesoporous heterostructures by micelle-directed interfacial assembly. Angew. Chem., Int. Ed. 2020, 59, 19570–19575.
Shan, Y. Y.; Chen, L. Y.; Pang, H.; Xu, Q. Metal–organic framework-based hybrid frameworks. Small Struct. 2021, 2, 2000078.
Chen, K. F.; Wang, X. L.; Hu, W. H.; Kong, Q. Q.; Pang, H.; Xu, Q. Modified metal–organic frameworks for electrochemical applications. Small Struct. 2022, 3, 2100200.
Kaneti, Y. V.; Dutta, S.; Hossain, M. S. A.; Shiddiky, M. J. A.; Tung, K. L.; Shieh, F. K.; Tsung, C. K.; Wu, K. C. W.; Yamauchi, Y. Strategies for improving the functionality of zeolitic imidazolate frameworks: Tailoring nanoarchitectures for functional applications. Adv. Mater. 2017, 29, 1700213.
Pei, C. G.; Choi, M. S.; Yu, X.; Xue, H. G.; Xia, B. Y.; Park, H. S. Recent progress in emerging metal and covalent organic frameworks for electrochemical and functional capacitors. J. Mater. Chem. A 2021, 9, 8832–8869.
Yang, F.; Deng, P. L.; Wang, Q. Y.; Zhu, J. X.; Yan, Y.; Zhou, L.; Qi, K.; Liu, H. F.; Park, H. S.; Xia, B. Y. Metal–organic framework-derived cupric oxide polycrystalline nanowires for selective carbon dioxide electroreduction to C2 valuables. J. Mater. Chem. A 2020, 8, 12418–12423.
Takele Menisa, L.; Cheng, P.; Long, C.; Qiu, X. Y.; Zheng, Y. L.; Han, J. Y.; Zhang, Y.; Gao, Y.; Tang, Z. Y. Insight into atomically dispersed porous M-N-C single-site catalysts for electrochemical CO2 reduction. Nanoscale 2020, 12, 16617–16626.
Hu, X. S.; Zhao, C. Y.; Hu, X.; Guan, Q. X.; Wang, Y. L.; Li, W. Nitrogen-doped carbon cages encapsulating CuZn alloy for enhanced CO2 reduction. ACS Appl. Mater. Interfaces 2019, 11, 25100–25107.
Wan, L.; Shamsaei, E.; Easton, C. D.; Yu, D. B.; Liang, Y.; Chen, X. F.; Abbasi, Z.; Akbari, A.; Zhang, X. W.; Wang, H. T. ZIF-8 derived nitrogen-doped porous carbon/carbon nanotube composite for high-performance supercapacitor. Carbon 2017, 121, 330–336.
Xie, F. X.; Li, H.; Wang, X. S.; Zhi, X.; Chao, D. L.; Davey, K.; Qiao, S. Z. Mechanism for zincophilic sites on zinc-metal anode hosts in aqueous batteries. Adv. Energy Mater. 2021, 11, 2003419.
Zhao, Z. M.; Zhao, J. W.; Hu, Z. L.; Li, J. D.; Li, J. J.; Zhang, Y. J.; Wang, C.; Cui, G. L. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 2019, 12, 1938–1949.
Jiao, S. Q.; Fu, J. M.; Wu, M. Z.; Hua, T.; Hu, H. B. Ion sieve: Tailoring Zn2+ desolvation kinetics and flux toward dendrite-free metallic zinc anodes. ACS Nano 2022, 16, 1013–1024.
Yan, M. Y.; He, P.; Chen, Y.; Wang, S. Y.; Wei, Q. L.; Zhao, K. N.; Xu, X.; An, Q. Y.; Shuang, Y.; Shao, Y. Y. et al. Water-lubricated intercalation in V2O5∙nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv. Mater. 2018, 30, 1703725.