AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Highly conductive, stretchable, durable, skin-conformal dry electrodes based on thermoplastic elastomer-embedded 3D porous graphene for multifunctional wearable bioelectronics

Shipeng ZhangMd. SharifuzzamnSM Sohel RanaMd. Abu ZahedSudeep SharmaYoungdo ShinHyesoo SongJae Yeong Park( )
Department of Electronic Engineering, Kwangwoon University, 447-1 Wolgye-dong, Nowon-gu, Seoul 01897, Republic of Korea
Show Author Information

Graphical Abstract

This work successfully embeds laser-induced graphene (LIG) onto styrene-ethylene-butylene-styrene (SEBS), achieving high stretchability, high flexibility, and low conduction loss, and electrophoretic deposited poly(3,4-ethylenedioxythiophene):polystyrenesulfonic acid (PEDOT:PSS) on LIG surfaces. Controlling the deposition time varies the deposition thickness of the conducting polymer to obtain optimal conductivity and chemical stability. SEBS/LIG/PEDOT:PSS (SLPP) dry electrodes offer high conductivity, reliability, stretchability, low electrode–skin impedance, and high signal-to-noise ratio for long-term biopotential monitoring and human–machine interface (HMI) control of household appliances.

Abstract

Long-term bioelectric potential recording requires highly reliable wearable dry electrodes. Laser-induced graphene (LIG) dry electrodes on polyimide (PI) films are difficult to conform to the skin due to the non-stretchability and low flexibility of PI films. As a result, high interface impedance and motion artifacts can occur during body movements. Transferring LIG to flexible substrates such as polydimethylsiloxane (PDMS) and Ecoflex allows for stretchability and flexibility. However, the transfer process produces a significant loss of conductivity destroying the structural function and electron conduction properties of the LIG. We found robust physical and chemical bonding effects between LIG and styrene-ethylene-butylene-styrene (SEBS) thermoplastic elastomer substrates and proposed a simple and robust low-conductivity loss transfer technique. Successfully embedded LIG onto SEBS to obtain high stretchability, high flexibility, and low conductivity losses. Electrophoretic deposition (EPD) of poly(3,4-ethylenedioxythiophene):polystyrenesulfonic acid (PEDOT:PSS) on LIG forms an ultrathin polymer conductive coating. The deposition thickness of the conductive polymer is adjusted by controlling the EPD deposition time to achieve optimal conductivity and chemical stability. SEBS/LIG/PEDOT:PSS (SLPP) dry electrodes have high conductivity (114 Ω/Sq), stretchability (300%) and reliability (30% stretch, 15,000 cycles), and low electrode–skin impedance (14.39 kΩ, 10 Hz). The detected biopotential signal has a high signal-to-noise ratio (SNR) of 35.78 dB. Finally, the feasibility of SLPP dry electrodes for long-term biopotential monitoring and biopotential-based human–machine interface control of household appliances was verified.

Electronic Supplementary Material

Video
12274_2023_5429_MOESM3_ESM.mp4
12274_2023_5429_MOESM4_ESM.mp4
12274_2023_5429_MOESM5_ESM.mp4
Download File(s)
12274_2023_5429_MOESM1_ESM.pdf (1.4 MB)
12274_2023_5429_MOESM2_ESM.pdf (5.7 MB)

References

[1]

Ma, Y. J.; Zhang, Y. C.; Cai, S. S.; Han, Z. Y.; Liu, X.; Wang, F. L.; Cao, Y.; Wang, Z. H.; Li, H. F.; Chen, Y. H. et al. Flexible hybrid electronics for digital healthcare. Adv. Mater. 2020, 32, 1902062.

[2]

Niu, H. S.; Gao, S.; Yue, W. J.; Li, Y.; Zhou, W. J.; Liu, H. Highly morphology-controllable and highly sensitive capacitive tactile sensor based on epidermis-dermis-inspired interlocked asymmetric-nanocone arrays for detection of tiny pressure. Small 2020, 16, 1904774.

[3]

Fang, Y. S.; Li, Y.; Wang, X.; Zhou, Z. G.; Zhang, K.; Zhou, J.; Hu, B. Cryo-transferred ultrathin and stretchable epidermal electrodes. Small 2020, 16, 2000450.

[4]

Kim, J. J.; Wang, Y.; Wang, H. Y.; Lee, S.; Yokota, T.; Someya, T. Skin electronics: Next-generation device platform for virtual and augmented reality. Adv. Funct. Mater. 2021, 31, 2009602.

[5]

Park, J.; Hwang, J. C.; Kim, G. G.; Park, J. U. Flexible electronics based on one-dimensional and two-dimensional hybrid nanomaterials. InfoMat 2020, 2, 33–56.

[6]

Lee, M. S.; Kim, J.; Park, J.; Park, J. U. Studies on the mechanical stretchability of transparent conductive film based on graphene–metal nanowire structures. Nanoscale Res. Lett. 2015, 10, 27.

[7]

Su, Y.; Ma, K. N.; Zhang, X.; Liu, M. Neural network-enabled flexible pressure and temperature sensor with honeycomb-like architecture for voice recognition. Sensors 2022, 22, 759.

[8]

Wang, Y. S.; Wang, X. Q.; Lu, W.; Yuan, Q. P.; Zheng, Y. R.; Yao, B. A thin film polyethylene terephthalate (PET) electrochemical sensor for detection of glucose in sweat. Talanta 2019, 198, 86–92.

[9]

Zhou, P. Y.; Liao, Y. Z.; Yang, X. B.; Su, Y. Y.; Yang, J. W.; Xu, L.; Wang, K.; Zeng, Z. H.; Zhou, L. M.; Zhang, Z. et al. Thermally stable, adhesively strong graphene/polyimide films for inkjet printing ultrasound sensors. Carbon 2021, 184, 64–71.

[10]

Chen, J.; Zheng, J. H.; Gao, Q. W.; Zhang, J. J.; Zhang, J. Y.; Omisore, O. M.; Wang, L.; Li, H. Polydimethylsiloxane (PDMS)-based flexible resistive strain sensors for wearable applications. Appl. Sci. 2018, 8, 345.

[11]

Kim, D. H.; Jung, Y.; Jung, K.; Kwak, D. H.; Park, D. M.; Shin, M. G.; Tak, H. J.; Ko, J. S. Hollow polydimethylsiloxane (PDMS) foam with a 3D interconnected network for highly sensitive capacitive pressure sensors. Micro Nano Syst. Lett. 2020, 8, 24.

[12]

Vivaldi, F. M.; Dallinger, A.; Bonini, A.; Poma, N.; Sembranti, L.; Biagini, D.; Salvo, P.; Greco, F.; Di Francesco, F. Three-dimensional (3D) laser-induced graphene: Structure, properties, and application to chemical sensing. ACS Appl. Mater. Interfaces 2021, 13, 30245–30260.

[13]

Sonntag, J.; Li, J.; Plaud, A.; Loiseau, A.; Barjon, J.; Edgar, J. H.; Stampfer, C. Excellent electronic transport in heterostructures of graphene and monoisotopic boron-nitride grown at atmospheric pressure. 2D Mater. 2020, 7, 031009.

[14]

Sur, U. K. Graphene: A rising star on the horizon of materials science. Int. J. Electrochem. 2012, 2012, 237689.

[15]

Zahed, M. A.; Das, P. S.; Maharjan, P.; Barman, S. C.; Sharifuzzaman, M.; Yoon, S. H.; Park, J. Y. Flexible and robust dry electrodes based on electroconductive polymer spray-coated 3D porous graphene for long-term electrocardiogram signal monitoring system. Carbon 2020, 165, 26–36.

[16]

Xu, Y. D.; Fei, Q. H.; Page, M.; Zhao, G. G.; Ling, Y.; Chen, D.; Yan, Z. Laser-induced graphene for bioelectronics and soft actuators. Nano Res. 2021, 14, 3033–3050.

[17]

Xuan, X.; Kim, J. Y.; Hui, X.; Das, P. S.; Yoon, H. S.; Park, J. Y. A highly stretchable and conductive 3D porous graphene metal nanocomposite based electrochemical-physiological hybrid biosensor. Biosens. Bioelectron. 2018, 120, 160–167.

[18]

Mahmood, F.; Zhang, H. W.; Lin, J.; Wan, C. X. Laser-induced graphene derived from Kraft lignin for flexible supercapacitors. ACS Omega 2020, 5, 14611–14618.

[19]

Dallinger, A.; Kindlhofer, P.; Greco, F.; Coclite, A. M. Multiresponsive soft actuators based on a thermoresponsive hydrogel and embedded laser-induced graphene. ACS Appl. Polym. Mater. 2021, 3, 1809–1818.

[20]

Zhang, S. P.; Chhetry, A.; Zahed, M. A.; Sharma, S.; Park, C.; Yoon, S.; Park, J. Y. On-skin ultrathin and stretchable multifunctional sensor for smart healthcare wearables. npj Flex. Electron. 2022, 6, 11.

[21]

Sharudin, R. W. B.; Ohshima, M. Preparation of microcellular thermoplastic elastomer foams from polystyrene-b-ethylene-butylene-b-polystyrene (SEBS) and their blends with polystyrene. J. Appl. Polym. Sci. 2013, 128, 2245–2254.

[22]
Koo, C. M. Electroactive thermoplastic dielectric elastomers as a new generation polymer actuators. In Thermoplastic Elastomers. El-Sonbati, A., Ed.; InTech: Rijeka, 2012.
[23]

Czajka, M.; Shanks, R. A.; Kong, I. Preparation of graphene and inclusion in composites with poly(styrene-b-butadiene-b-styrene). Sci. Eng. Compos. Mater. 2015, 22, 7–16.

[24]

Yu, W.; Li, S. S.; Yang, H. Y.; Luo, J. Progress in the functional modification of graphene/graphene oxide: A review. RSC Adv. 2020, 10, 15328–15345.

[25]

Kwon, M.; Yang, J.; Kim, H.; Joo, H.; Joo, S. W.; Lee, Y. S.; Lee, H. J.; Jeong, S. Y.; Han, J. H.; Paik, H. J. Controlling graphene wrinkles through the phase transition of a polymer with a low critical solution temperature. Macromol. Rapid Commun. 2021, 42, 2100489.

[26]

Zhang, L.; Kumar, K. S.; He, H.; Cai, C. J.; He, X.; Gao, H. X.; Yue, S. Z.; Li, C. S.; Seet, R. C. S.; Ren, H. L. et al. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring. Nat. Commun. 2020, 11, 4683.

[27]

Chen, Y. H.; De Beeck, M. O.; Vanderheyden, L.; Carrette, E.; Mihajlović, V.; Vanstreels, K.; Grundlehner, B.; Gadeyne, S.; Boon, P.; Van Hoof, C. Soft, comfortable polymer dry electrodes for high quality ECG and EEG recording. Sensors 2014, 14, 23758–23780.

[28]

Fu, Y. L.; Zhao, J. J.; Dong, Y.; Wang, X. H. Dry electrodes for human bioelectrical signal monitoring. Sensors 2020, 20, 3651.

[29]

Yang, Y.; Deng, H.; Fu, Q. Recent progress on PEDOT:PSS based polymer blends and composites for flexible electronics and thermoelectric devices. Mater. Chem. Front. 2020, 4, 3130–3152.

[30]

Wang, Y.; Zhu, C. X.; Pfattner, R.; Yan, H. P.; Jin, L. H.; Chen, S. C.; Molina-Lopez, F.; Lissel, F.; Liu, J.; Rabiah, N. I. et al. A highly stretchable, transparent, and conductive polymer. Sci. Adv. 2017, 3, e1602076.

[31]

Kim, N.; Lienemann, S.; Petsagkourakis, I.; Mengistie, D. A.; Kee, S.; Ederth, T.; Gueskine, V.; Leclère, P.; Lazzaroni, R.; Crispin, X. et al. Elastic conducting polymer composites in thermoelectric modules. Nat. Commun. 2020, 11, 1424.

[32]

Shahrim, N. A.; Ahmad, Z.; Azman, A. W.; Buys, Y. F.; Sarifuddin, N. Mechanisms for doped PEDOT:PSS electrical conductivity improvement. Mater. Adv. 2021, 2, 7118–7138.

[33]

Gao, N.; Yu, J. R.; Tian, Q. Y.; Shi, J. F.; Zhang, M.; Chen, S.; Zang, L. Application of PEDOT:PSS and its composites in electrochemical and electronic chemosensors. Chemosensors 2021, 9, 79.

[34]

Xie, X.; Ju, L.; Feng, X. F.; Sun, Y. H.; Zhou, R. F.; Liu, K.; Fan, S. S.; Li, Q. Q.; Jiang, K. L. Controlled fabrication of high-quality carbon nanoscrolls from monolayer graphene. Nano Lett. 2009, 9, 2565–2570.

[35]

Sinha, S. K.; Noh, Y.; Reljin, N.; Treich, G. M.; Hajeb-Mohammadalipour, S.; Guo, Y.; Chon, K. H.; Sotzing, G. A. Screen-printed PEDOT:PSS electrodes on commercial finished textiles for electrocardiography. ACS Appl. Mater. Interfaces 2017, 9, 37524–37528.

[36]

Su, Z. J.; Yang, C.; Xu, C. J.; Wu, H. Y.; Zhang, Z. X.; Liu, T.; Zhang, C.; Yang, Q. H.; Li, B. H.; Kang, F. Y. Co-electro-deposition of the MnO2-PEDOT:PSS nanostructured composite for high areal mass, flexible asymmetric supercapacitor devices. J. Mater. Chem. A 2013, 1, 12432–12440.

[37]

Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

[38]

Li, W.; Tan, C.; Lowe, M. A.; Abruña, H. D.; Ralph, D. C. Electrochemistry of individual monolayer graphene sheets. ACS Nano 2011, 5, 2264–2270.

[39]

Jiang, X. Y.; Wang, Z. L.; Han, W. H.; Liu, Q. M.; Lu, S. Q.; Wen, Y. X.; Hou, J.; Huang, F.; Peng, S. L.; He, D. Y. et al. High performance silicon-organic hybrid solar cells via improving conductivity of PEDOT:PSS with reduced graphene oxide. Appl. Surf. Sci. 2017, 407, 398–404.

[40]

Guo, X. S.; Jian, J. M.; Lin, L. W.; Zhu, H. Y.; Zhu, S. M. O2 plasma-functionalized SWCNTs and PEDOT/PSS composite film assembled by dielectrophoresis for ultrasensitive trimethylamine gas sensor. Analyst 2013, 138, 5265–5273.

[41]

Merche, D.; Hubert, J.; Poleunis, C.; Yunus, S.; Bertrand, P.; De Keyzer, P.; Reniers, F. One step polymerization of sulfonated polystyrene films in a dielectric barrier discharge. Plasma Process. Polym. 2010, 7, 836–845.

[42]

Kim, S. M.; Kim, C. H.; Kim, Y.; Kim, N.; Lee, W. J.; Lee, E. H.; Kim, D.; Park, S.; Lee, K.; Rivnay, J. et al. Influence of PEDOT:PSS crystallinity and composition on electrochemical transistor performance and long-term stability. Nat. Commun. 2018, 9, 3858.

[43]

Stauffer, F.; Thielen, M.; Sauter, C.; Chardonnens, S.; Bachmann, S.; Tybrandt, K.; Peters, C.; Hierold, C.; Vörös, J. Skin conformal polymer electrodes for clinical ECG and EEG recordings. Adv. Healthc. Mater. 2018, 7, 1700994.

Nano Research
Pages 7627-7637
Cite this article:
Zhang S, Sharifuzzamn M, Rana SS, et al. Highly conductive, stretchable, durable, skin-conformal dry electrodes based on thermoplastic elastomer-embedded 3D porous graphene for multifunctional wearable bioelectronics. Nano Research, 2023, 16(5): 7627-7637. https://doi.org/10.1007/s12274-023-5429-5
Topics:

5461

Views

16

Crossref

8

Web of Science

15

Scopus

0

CSCD

Altmetrics

Received: 26 September 2022
Revised: 28 November 2022
Accepted: 18 December 2022
Published: 21 January 2023
© Tsinghua University Press 2023
Return