Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
As efficient catalysts of electrochemical CO2 reduction reaction (CO2RR) towards multicarbon (C2+) products, Cu-based catalysts have faced the challenges of increasing the reactive activity and selectivity. Herein, we decorated the surface of Cu nanowires (Cu NWs) with a small amount of Au nanoparticles (Au NPs) by the homo-nucleation method. When the Au to Cu mass ratio is as little as 0.7 to 99.3, the gold-doped copper nanowires (Cu-Au NWs) could effectively improve the selectivity and activity of CO2RR to C2+ resultants, with the Faradaic efficiency (FE) from 39.7% (Cu NWs) to 65.3%, and the partial current density from 7.0 (Cu NWs) to 12.1 mA/cm2 under −1.25 V vs. reversible hydrogen electrode (RHE). The enhanced electrocatalytic performance could be attributed to the following three synergetic factors. The addition of Au nanoparticles caused a rougher surface of the catalyst, which allowed for more active sites exposed. Besides, Au sites generated *CO intermediates spilling over into Cu sites with the calculated efficiency of 87.2%, which are necessary for multicarbon production. Meanwhile, the interphase electron transferred from Cu to Au induced the electron-deficient Cu, which favored the adsorption of *CO to further generate multicarbon productions. Our results uncovered the morphology, tandem, and electronic effect between Cu NWs and Au NPs facilitated the activity and selectivity of CO2RR to multicarbons.
Li, Z.; Wu, R.; Zhao, L.; Li, P. B.; Wei, X. X.; Wang, J. J.; Chen, J. S.; Zhang, T. R. Metal-support interactions in designing noble metal-based catalysts for electrochemical CO2 reduction: Recent advances and future perspectives. Nano Res. 2021, 14, 3795–3809.
Cai, Z.; Zhang, Y. S.; Zhao, Y. X.; Wu, Y. S.; Xu, W. W.; Wen, X. M.; Zhong, Y.; Zhang, Y.; Liu, W.; Wang, H. L. et al. Selectivity regulation of CO2 electroreduction through contact interface engineering on superwetting Cu nanoarray electrodes. Nano Res. 2019, 12, 345–349.
Hou, Y.; Huang, Y. B.; Liang, Y. L.; Chai, G. L.; Yi, J. D.; Zhang, T.; Zang, K. T.; Luo, J.; Xu, R.; Lin, H. et al. Unraveling the reactivity and selectivity of atomically isolated metal-nitrogen sites anchored on porphyrinic triazine frameworks for electroreduction of CO2. CCS Chem. 2019, 1, 384–395.
Xia, D.; Yu, H. Y.; Xie, H.; Huang, P.; Menzel, R.; Titirici, M. M.; Chai, G. Recent progress of Bi-based electrocatalysts for electrocatalytic CO2 reduction. Nanoscale 2022, 14, 7957–7973.
Xiong, L. K.; Zhang, X.; Yuan, H.; Wang, J.; Yuan, X. Z.; Lian, Y. B.; Jin, H. D.; Sun, H.; Deng, Z.; Wang, D. et al. Breaking the linear scaling relationship by compositional and structural crafting of ternary Cu-Au/Ag nanoframes for electrocatalytic ethylene production. Angew. Chem., Int. Ed. 2021, 60, 2508–2518.
Zhang, T. Y.; Bui, J. C.; Li, Z. Y.; Bell, A. T.; Weber, A. Z.; Wu, J. J. Highly selective and productive reduction of carbon dioxide to multicarbon products via in situ CO management using segmented tandem electrodes. Nat. Catal. 2022, 5, 202–211.
Xu, H. P.; Rebollar, D.; He, H. Y.; Chong, L. N.; Liu, Y. Z.; Liu, C.; Sun, C. J.; Li, T.; Muntean, J. V.; Winans, R. E. et al. Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper. Nat. Energy 2020, 5, 623–632.
Li, Y. C.; Wang, Z. Y.; Yuan, T. G.; Nam, D. H.; Luo, M. C.; Wicks, J.; Chen, B.; Li, J.; Li, F. W.; de Arquer, F. P. G. et al. Binding site diversity promotes CO2 electroreduction to ethanol. J. Am. Chem. Soc. 2019, 141, 8584–8591.
Peng, C.; Luo, G.; Zhang, J. B.; Chen, M. H.; Wang, Z. Q.; Sham, T. K.; Zhang, L. J.; Li, Y. F.; Zheng, G. F. Double sulfur vacancies by lithium tuning enhance CO2 electroreduction to n-propanol. Nat. Commun. 2021, 12, 1580.
Wu, G. L.; Song, Y. R.; Zheng, Q.; Long, C.; Fan, T.; Yang, Z. J.; Huang, X. W.; Li, Q.; Sun, Y. L.; Zuo, L. L. et al. Selective electroreduction of CO2 to n-propanol in two-step tandem catalytic system. Adv. Energy Mater. 2022, 12, 2202054.
Tomboc, G. M.; Choi, S.; Kwon, T.; Hwang, Y. J.; Lee, K. Potential link between Cu surface and selective CO2 electroreduction: Perspective on future electrocatalyst designs. Adv. Mater. 2020, 32, 1908398.
Popović, S.; Smiljanić, M.; Jovanović, P.; Vavra, J.; Buonsanti, R.; Hodnik, N. Stability and degradation mechanisms of copper-based catalysts for electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 14736–14746.
Chang, Y. B.; Zhang, C.; Lu, X. L.; Zhang, W.; Lu, T. B. Graphdiyene enables ultrafine Cu nanoparticles to selectively reduce CO2 to C2+ products. Nano Res. 2022, 15, 195–201.
Chen, Z.; Song, Y.; Zhang, Z. Y.; Cai, Y. F.; Liu, H.; Xie, W. X.; Deng, D. H. Mechanically induced Cu active sites for selective C–C coupling in CO2 electroreduction. J. Energy Chem. 2022, 74, 198–202.
Liu, D. D.; Zhang, Z. Y.; Feng, J. J.; Yu, Z.; Meng, F. N.; Xu, G. H.; Wang, J. M.; Wen, W.; Liu W. Atomic-level flatness on oxygen-free copper surface in lapping and chemical mechanical polishing. Nanoscale Adv. 2022, 4, 4263–4271.
Zhang, Z. Y.; Cui, J. F.; Zhang, J. B.; Liu, D. D.; Yu, Z. J.; Guo, D. M. Environment friendly chemical mechanical polishing of copper. Appl. Surf. Sci. 2019, 467–468, 5–11.
Wu, Z. Z.; Zhang, X. L.; Niu, Z. Z.; Gao, F. Y.; Yang, P. P.; Chi, L. P.; Shi, L.; Wei, W. S.; Liu, R.; Chen, Z. et al. Identification of Cu (100)/Cu (111) interfaces as superior active sites for CO dimerization during CO2 electroreduction. J. Am. Chem. Soc. 2022, 144, 259–269.
Chang, C. J.; Lin, S. C.; Chen, H. C.; Wang, J. L.; Zheng, K. J.; Zhu, Y. P.; Chen, H. M. Dynamic reoxidation/reduction-driven atomic interdiffusion for highly selective CO2 reduction toward methane. J. Am. Chem. Soc. 2020, 142, 12119–12132.
Zhang, L. G.; Li, N.; Gao, F. M.; Hou, L.; Xu, Z. M. Insulin amyloid fibrils: An excellent platform for controlled synthesis of ultrathin superlong platinum nanowires with high electrocatalytic activity. J. Am. Chem. Soc. 2012, 134, 11326–11329.
Zhu, Y. T.; Cui, X. Y.; Liu, H. L.; Guo, Z. G.; Dang, Y. F.; Fan, Z. X.; Zhang, Z. C.; Hu, W. P. Tandem catalysis in electrochemical CO2 reduction reaction. Nano Res. 2021, 14, 4471–4486.
Fu, J. J.; Zhu, W. L.; Chen, Y.; Yin, Z. Y.; Li, Y. Y.; Liu, J.; Zhang, H. Y.; Zhu, J. J.; Sun, S. H. Bipyridine-assisted assembly of Au nanoparticles on Cu nanowires to enhance the electrochemical reduction of CO2. Angew. Chem., Int. Ed. 2019, 58, 14100–14103.
Morales-Guio, C. G.; Cave, E. R.; Nitopi, S. A.; Feaster, J. T.; Wang, L.; Kuhl, K. P.; Jackson, A.; Johnson, N. C.; Abram, D. N.; Hatsukade, T. et al. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal. 2018, 1, 764–771.
Choi, C.; Cai, J.; Lee, C.; Lee, H. M.; Xu, M. J.; Huang, Y. Intimate atomic Cu-Ag interfaces for high CO2RR selectivity towards CH4 at low over potential. Nano Res. 2021, 14, 3497–3501.
Zhong, Y. Z.; Kong, X. D.; Song, Z. M.; Liu, Y.; Peng, L. P.; Zhang, L.; Luo, X.; Zeng, J.; Geng, Z. G. Adjusting local CO confinement in porous-shell Ag@Cu catalysts for enhancing C–C coupling toward CO2 eletroreduction. Nano Lett. 2022, 22, 2554–2560.
Lv, H.; Lv, F.; Qin, H. Y.; Min, X. W.; Sun, L. Z.; Han, N.; Xu, D. D.; Li, Y. G.; Liu, B. Single-crystalline mesoporous palladium and palladium-copper nanocubes for highly efficient electrochemical CO2 reduction. CCS Chem. 2022, 4, 1376–1385.
Wang, Y. H.; Liu, J. L.; Zheng, G. F. Designing copper-based catalysts for efficient carbon dioxide electroreduction. Adv. Mater. 2021, 33, 2005798.
Huang, J. F.; Mensi, M.; Oveisi, E.; Mantella, V.; Buonsanti, R. Structural sensitivities in bimetallic catalysts for electrochemical CO2 reduction revealed by Ag-Cu nanodimers. J. Am. Chem. Soc. 2019, 141, 2490–2499.
Zhu, W. L.; Zhang, Y. J.; Zhang, H. Y.; Lv, H. F.; Li, Q.; Michalsky, R.; Peterson, A. A.; Sun, S. H. Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J. Am. Chem. Soc. 2014, 136, 16132–16135.
Zangmeister, C. D.; Picraux, L. B.; Van Zee, R. D.; Yao, Y. X.; Tour, J. M. Energy-level alignment and work function shifts for thiol-bound monolayers of conjugated molecules self-assembled on Ag, Cu, Au, and Pt. Chem. Phys. Lett. 2007, 442, 390–393.
Wang, X.; Ou, P. F.; Wicks, J.; Xie, Y.; Wang, Y.; Li, J.; Tam, J.; Ren, D.; Howe, J. Y.; Wang, Z. Y. et al. Gold-in-copper at low *CO coverage enables efficient electromethanation of CO2. Nat. Commun. 2021, 12, 3387.
Kim, D.; Resasco, J.; Yu, Y.; Asiri, A. M.; Yang, P. D. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat. Commun. 2014, 5, 4948.
Kim, D.; Xie, C. L.; Becknell, N.; Yu, Y.; Karamad, M.; Chan, K.; Crumlin, E. J.; Nørskov, J. K.; Yang, P. D. Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J. Am. Chem. Soc. 2017, 139, 8329–8336.
Dai, S.; Huang, T. H.; Liu, W. I.; Hsu, C. W.; Lee, S. W.; Chen, T. Y.; Wang, Y. C.; Wang, J. H.; Wang, K. W. Enhanced CO2 electrochemical reduction performance over Cu@AuCu catalysts at high noble metal utilization efficiency. Nano Lett. 2021, 21, 9293–9300.
Stewart, I. E.; Ye, S. R.; Chen, Z. F.; Flowers, P. F.; Wiley, B. J. Synthesis of Cu-Ag, Cu-Au, and Cu-Pt core–shell nanowires and their use in transparent conducting films. Chem. Mater. 2015, 27, 7788–7794.
Luo, M.; Zhou, M.; Da Silva, R. R.; Tao, J.; Figueroa-Cosme, L.; Gilroy, K. D.; Peng, H. C.; He, Z. K.; Xia, Y. N. Pentatwinned Cu nanowires with ultrathin diameters below 20 nm and their use as templates for the synthesis of Au-based nanotubes. ChemNanoMat 2017, 3, 190–195.
Jin, M. S.; He, G. N.; Zhang, H.; Zeng, J.; Xie, Z. X.; Xia, Y. N. Shape-controlled synthesis of copper nanocrystals in an aqueous solution with glucose as a reducing agent and hexadecylamine as a capping agent. Angew. Chem., Int. Ed. 2011, 50, 10560–10564.
Zhang, W.; Huang, C. Q.; Xiao, Q.; Yu, L.; Shuai, L.; An, P. F.; Zhang, J.; Qiu, M.; Ren, Z. F.; Yu, Y. Atypical oxygen-bearing copper boosts ethylene selectivity toward electrocatalytic CO2 reduction. J. Am. Chem. Soc. 2020, 142, 11417–11427.
Chen, C. B.; Li, Y. F.; Yu, S.; Louisia, S.; Jin, J. B.; Li, M. F.; Ross, M. B.; Yang, P. D. Cu-Ag tandem catalysts for high-rate CO2 electrolysis toward multicarbons. Joule 2020, 4, 1688–1699.
Jia, H. L.; Yang, Y. Y.; Chow, T. H.; Zhang, H.; Liu, X. Y.; Wang, J. F.; Zhang, C. Y. Symmetry-broken Au-Cu heterostructures and their tandem catalysis process in electrochemical CO2 reduction. Adv. Funct. Mater. 2021, 31, 2101255.
Yang, R. O.; Duan, J. Y.; Dong, P. P.; Wen, Q. L.; Wu, M.; Liu, Y. W.; Liu, Y.; Li, H. Q.; Zhai, T. Y. In situ halogen-ion leaching regulates multiple sites on tandem catalysts for efficient CO2 electroreduction to C2+ products. Angew. Chem., Int. Ed. 2022, 61, e202116706.
Gao, J.; Zhang, H.; Guo, X. Y.; Luo, J. S.; Zakeeruddin, S. M.; Ren, D.; Grätzel, M. Selective C–C coupling in carbon dioxide electroreduction via efficient spillover of intermediates as supported by operando Raman spectroscopy. J. Am. Chem. Soc. 2019, 141, 18704–18714.
Guo, C. Y.; Guo, Y. H.; Shi, Y. M.; Lan, X. N.; Wang, Y. T.; Yu, Y. F.; Zhang, B. Electrocatalytic reduction of CO2 to ethanol at close to theoretical potential via engineering abundant electron-donating Cuδ+ species. Angew. Chem., Int. Ed. 2022, 61, e202205909.
Zhu, S. Q.; Jiang, B.; Cai, W. B.; Shao, M. H. Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces. J. Am. Chem. Soc. 2017, 139, 15664–15667.
Ma, S. C.; Sadakiyo, M.; Heima, M.; Luo, R.; Haasch, R. T.; Gold, J. I.; Yamauchi, M.; Kenis, P. J. A. Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu-Pd catalysts with different mixing patterns. J. Am. Chem. Soc. 2017, 139, 47–50.
Hammer, B.; Nørskov, J. K. Theoretical surface science and catalysis-calculations and concepts. Adv. Catal. 2000, 45, 71–129.