AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Bi2O2Se nanoplates for broadband photodetector and full-color imaging applications

Han Wang1Songqing Zhang1Xingxuan Wu1Huijia Luo1Junliang Liu1,2Zesheng Mu1Ruirui Liu1Guang Yuan3Yujun Liang4Jin Tan4Yongling Ren1Wen Lei1( )
Department of Electrical, Electronic and Computer Engineering, The University of Western Australia, Crawley 6009, Australia
Department of Electronic Engineering, School of IOT engineering, Jiangnan University, Wuxi 214122, China
College of Information Science and Engineering, Ocean University of China, Qingdao 266100, China
Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
Show Author Information

Graphical Abstract

The digital full-color image is obtained from the Bi2O2Se nanoplate device by combing the split monochrome images of red, green, and blue colors.

Abstract

Broadband light detection and sensing are widely applied in modern technology. As a promising candidate for next-generation two-dimensional (2D) optoelectronic material, bismuth oxyselenide (Bi2O2Se) nanoplates exhibit many prospects in the application of visible light detection due to their peculiar properties. In this work, we report the photodetection performance of single-crystal 2D Bi2O2Se nanoplates grown on SiO2 based on a ternary-alloy growth model by utilizing chemical vapor deposition (CVD). The Bi2O2Se nanoplates were found to have an even and uniform square shape with side lengths up to 15 µm and an approximate thickness of 15 nm. A visible-light photodetector was fabricated based on a CVD-grown Bi2O2Se nanoplate, and characterized by a set of illumination experiments using a 400 nm laser at temperatures ranging from 77 to 370 K. The device exhibited superior performance at the temperature of 77 K, with a responsivity of 523 A/W, a specific detectivity of 1.37 × 1011 Jones, a response time of 0.2175 ms, and an external quantum efficiency of 162,119.44%, resulting in high-quality and full-color imaging in the visible spectrum. These results indicate that the single-crystalline Bi2O2Se nanoplates have excellent potential in broadband photodetection and non-cryogenic imaging.

Electronic Supplementary Material

Download File(s)
12274_2023_5434_MOESM1_ESM.pdf (286.9 KB)

References

[1]

Liu, J. L.; Pan, W. W.; Wang, H.; Zhang, Z. K.; Zhang, S. Q.; Yuan, G.; Yuan, C. L.; Ren, Y. L.; Lei, W. Hysteresis effect in two-dimensional Bi2Te3 nanoplate field-effect transistors. Adv. Electron. Mater. 2021, 7, 2000851.

[2]

Lei, W.; Madni, I.; Ren, Y. L.; Yuan, C. L.; Luo, G. Q.; Faraone, L. Controlled vapour-phase deposition synthesis and growth mechanism of Bi2Te3 nanostructures. Appl. Phys. Lett. 2016, 109, 083106.

[3]

Liu, J. L.; Chen, H.; Li, X.; Wang, H.; Zhang, Z. K.; Pan, W. W.; Yuan, G.; Yuan, C. L.; Ren, Y. L.; Lei, W. Ultra-fast and high flexibility near-infrared photodetectors based on Bi2Se3 nanobelts grown via catalyst-free van der Waals epitaxy. J. Alloys Compd. 2020, 818, 152819.

[4]

Liu, J. L.; Wang, H.; Li, X.; Chen, H.; Zhang, Z. K.; Pan, W. W.; Luo, G. Q.; Yuan, C. L.; Ren, Y. L.; Lei, W. Ultrasensitive flexible near-infrared photodetectors based on van der Waals Bi2Te3 nanoplates. Appl. Surface Sci. 2019, 484, 542–550.

[5]

Sun, Y.; Zhang, J.; Ye, S.; Song, J.; Qu, J. L. Progress report on property, preparation, and application of Bi2O2Se. Adv. Funct. Mater. 2020, 30, 2004480.

[6]

Boller, H. Die kristallstruktur von Bi2O2Se. Monatsh. Chem. Chem. Mon. 1973, 104, 916–919.

[7]

Guo, R. Q.; Jiang, P. Q.; Tu, T.; Lee, S.; Sun, B.; Peng, H. L.; Yang, R. G. Electrostatic interaction determines thermal conductivity anisotropy of Bi2O2Se. Cell Rep. Phys. Sci. 2021, 2, 100624.

[8]

Cheng, T.; Tan, C. W.; Zhang, S. Q.; Tu, T.; Peng, H. L.; Liu, Z. R. Raman spectra and strain effects in bismuth oxychalcogenides. J. Phys. Chem. C 2018, 122, 19970–19980.

[9]

Wu, J. X.; Tan, C. W.; Tan, Z. J.; Liu, Y. J.; Yin, J. B.; Dang, W. H.; Wang, M. Z.; Peng, H. L. Controlled synthesis of high-mobility atomically thin bismuth oxyselenide crystals. Nano Lett. 2017, 17, 3021–3026.

[10]

Fu, Q. D.; Zhu, C.; Zhao, X. X.; Wang, X. L.; Chaturvedi, A.; Zhu, C.; Wang, X. W.; Zeng, Q. S.; Zhou, J. D.; Liu, F. C. et al. Ultrasensitive 2D Bi2O2Se phototransistors on silicon substrates. Adv. Mater. 2019, 31, 1804945.

[11]

Li, J.; Wang, Z. X.; Chu, J. W.; Cheng, Z. Z.; He, P.; Wang, J. J.; Yin, L.; Cheng, R. Q.; Li, N. N.; Wen, Y. et al. Oriented layered Bi2O2Se nanowire arrays for ultrasensitive photodetectors. Appl. Phys. Lett. 2019, 114, 151104.

[12]

Wu, J. X.; Yuan, H. T.; Meng, M. M.; Chen, C.; Sun, Y.; Chen, Z. Y.; Dang, W. H.; Tan, C. W.; Liu, Y. J.; Yin, J. B. et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat. Nanotechnol. 2017, 12, 530–534.

[13]

Yin, J. B.; Tan, Z. J.; Hong, H.; Wu, J. X.; Yuan, H. T.; Liu, Y. J.; Chen, C.; Tan, C. W.; Yao, F. R.; Li, T. R. et al. Ultrafast and highly sensitive infrared photodetectors based on two-dimensional oxyselenide crystals. Nat. Commun. 2018, 9, 3311.

[14]

Liu, X.; Wang, W. H.; Yang, F.; Feng, S. P.; Hu, Z. L.; Lu, J. P.; Ni, Z. H. Bi2O2Se/BP van der Waals heterojunction for high performance broadband photodetector. Sci. China Inform. Sci. 2021, 64, 140404.

[15]

Cheng, Z. Z.; Zhao, T.; Zeng, H. B. 2D material-based photodetectors for infrared imaging. Small Sci. 2022, 2, 2100051.

[16]

Khan, U.; Luo, Y. T.; Tang, L.; Teng, C. J.; Liu, J. M.; Liu, B. L.; Cheng, H. M. Controlled vapor–solid deposition of millimeter-size single crystal 2D Bi2O2Se for high-performance phototransistors. Adv. Funct. Mater. 2019, 29, 1807979.

[17]

Sagar, R. U. R.; Khan, U.; Galluzzi, M.; Aslam, S.; Nairan, A.; Anwar, T.; Ahmad, W.; Zhang, M.; Liang, T. X. Transfer-free growth of Bi2O2Se on silicon dioxide via chemical vapor deposition. ACS Appl. Electron. Mater. 2020, 2, 2123–2131.

[18]

Liu, J. L.; Li, X.; Wang, H.; Yuan, G.; Suvorova, A.; Gain, S.; Ren, Y. L.; Lei, W. Ultrathin high-quality SnTe nanoplates for fabricating flexible near-infrared photodetectors. ACS Appl. Mater. Interfaces 2020, 12, 31810–31822.

[19]

Zhou, X.; Gan, L.; Tian, W. M.; Zhang, Q.; Jin, S. Y.; Li, H. Q.; Bando, Y.; Golberg, D.; Zhai, T. Y. Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors. Adv. Mater. 2015, 27, 8035–8041.

[20]

Zheng, Z. Q.; Zhang, T. M.; Yao, J.; Zhang, Y.; Xu, J. R.; Yang, G. W. Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices. Nanotechnology 2016, 27, 225501.

[21]

Hu, X.; Zhang, X. D.; Liang, L.; Bao, J.; Li, S.; Yang, W. L.; Xie, Y. High-performance flexible broadband photodetector based on organolead halide perovskite. Adv. Funct. Mater. 2014, 24, 7373–7380.

[22]

Carmody, M.; Edwall, D.; Ellsworth, J.; Arias, J.; Groenert, M.; Jacobs, R.; Almeida, L. A.; Dinan, J. H.; Chen, Y.; Brill, G. et al. Role of dislocation scattering on the electron mobility of n-type long wave length infrared HgCdTe on silicon. J. Electron. Mater. 2007, 36, 1098–1105.

[23]

Dubowski, J. J.; Dietl, T.; Szymańska, W.; Galazka, R. R. Electron scattering in CdxHg1−xTe. J. Phys. Chem. Solids 1981, 42, 351–362.

[24]

Kufer, D.; Konstantatos, G. Highly sensitive, encapsulated MoS2 photodetector with gate controllable gain and speed. Nano Lett. 2015, 15, 7307–7313.

[25]

Cheng, R. Q.; Wen, Y.; Yin, L.; Wang, F. M.; Wang, F.; Liu, K. L.; Shifa, T. A.; Li, J.; Jiang, C.; Wang, Z. X. et al. Ultrathin single-crystalline CdTe nanosheets realized via van der Waals epitaxy. Adv. Mater. 2017, 29, 1703122.

[26]

Tamalampudi, S. R.; Lu, Y. Y.; U, R. K.; Sankar, R.; Liao, C. D.; B, K. M.; Cheng, C. H.; Chou, F. C.; Chen, Y. T. High performance and bendable few-layered InSe photodetectors with broad spectral response. Nano Lett. 2014, 14, 2800–2806.

[27]

Wang, H.; Liu, R. R.; Zhang, S. Q.; Wang, Y. J.; Luo, H. J.; Sun, X.; Ren, Y. L.; Lei, W. Controlled growth of high-quality Bi2S3 nanowires and their application in near-infrared photodetection. Opt. Mater. 2022, 134, 113174.

[28]

Luo, P.; Wang, F. K.; Qu, J. Y.; Liu, K. L.; Hu, X. Z.; Liu, K. W.; Zhai, T. Y. Self-driven WSe2/Bi2O2Se van der Waals heterostructure photodetectors with high light on/off ratio and fast response. Adv. Funct. Mater. 2021, 31, 2008351.

[29]

Zhang, S. Q.; Liu, J. L.; Kirchner, M. M.; Wang, H.; Ren, Y. L.; Lei, W. Two-dimensional heterostructures and their device applications: Progress, challenges and opportunities—Review. J. Phys. D Appl. Phys. 2021, 54, 433001.

[30]

Li, J.; Wang, Z. X.; Wen, Y.; Chu, J. W.; Yin, L.; Cheng, R. Q.; Lei, L.; He, P.; Jiang, C.; Feng, L. P. et al. High-performance near-infrared photodetector based on ultrathin Bi2O2Se nanosheets. Adv. Funct. Mater. 2018, 28, 1706437.

[31]

Tao, L.; Li, S. N.; Yao, B.; Xia, M. J.; Gao, W.; Yang, Y. J.; Wang, X. Z.; Huo, N. J. Raman anisotropy and polarization-sensitive photodetection in 2D Bi2O2Se–WSe2 heterostructure. ACS Omega 2021, 6, 34763–34770.

[32]

Han, J. F.; Fang, C. C.; Yu, M.; Cao, J. X.; Huang, K. A high-performance Schottky photodiode with asymmetric metal contacts constructed on 2D Bi2O2Se. Adv. Electron. Mater. 2022, 8, 2100987.

[33]

Liu, J. L.; Wang, H.; Li, X.; Chen, H.; Zhang, Z. K.; Pan, W. W.; Luo, G. Q.; Yuan, C. L.; Ren, Y. L.; Lei, W. High performance visible photodetectors based on thin two-dimensional Bi2Te3 nanoplates. J. Alloys Compd. 2019, 798, 656–664.

[34]

Wang, H.; Zhang, S. Q.; Zhang, T. Z.; Liu, J. L.; Zhang, Z. K.; Yuan, G.; Liang, Y. J.; Tan, J.; Ren, Y. L.; Lei, W. SnSe nanoplates for photodetectors with a high signal/noise ratio. ACS Appl. Nano Mater. 2021, 4, 13071–13078.

[35]

Wang, H.; Liu, J. L.; Wu, X. X.; Zhang, S. Q.; Zhang, Z. K.; Pan, W. W.; Yuan, G.; Yuan, C. L.; Ren, Y. L.; Lei, W. Ultra-long high quality catalyst-free WO3 nanowires for fabricating high-performance visible photodetectors. Nanotechnology 2020, 31, 274003.

Nano Research
Pages 7638-7645
Cite this article:
Wang H, Zhang S, Wu X, et al. Bi2O2Se nanoplates for broadband photodetector and full-color imaging applications. Nano Research, 2023, 16(5): 7638-7645. https://doi.org/10.1007/s12274-023-5434-3
Topics:

2665

Views

9

Crossref

11

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 02 October 2022
Revised: 19 December 2022
Accepted: 22 December 2022
Published: 05 March 2023
© Tsinghua University Press 2023
Return