AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Molecular interactions induced collapse of charge density wave quantum states in 2H tantalum disulfide nanosheets

Borgea G. M. Ekoya1Jinkun Han1Junqiang Zhu1Yabing Shan1Ran Liu1( )Laigui Hu1Zhi-Jun Qiu1Chunxiao Cong1,2( )
Micro-Nano System Center, School of Information Science and Technology, Fudan University, Shanghai 200438, China
Yiwu Research Institute of Fudan University, Yiwu 322000, China
Show Author Information

Graphical Abstract

At low temperatures, 2H-tantalum disulfide (2H-TaS2) exhibits charge density wave (CDW) quantum states. Due to the effective charge transfer transitions between rhodamine 6G (R6G) and TaS2, the CDW collapses in the R6G/TaS2 system.

Abstract

2H-tantalum disulfide (2H-TaS2) is a layered metallic transition metal dichalcogenide (TMD) that has recently been studied from the perspective of new physics phenomena, including simultaneous lattice distortion and charge density modulation known as the charge density wave (CDW) phase. Here we explored the collapse of CDW states in few-layer 2H-TaS2 induced by molecular interactions using Raman spectroscopy. Our results indicate that the CDW states disappear in few-layer 2H-TaS2 with rhodamine 6G (R6G) adsorbed due to the charge transfer, which is reflected by the change of behaviors of lattice vibrational modes in 2H-TaS2. We observed the 2-phonon mode that signifies the CDW formation in 2H-TaS2, and becomes a phonon-hardened mode when R6G molecules are absorbed on its surface. R6G adsorption further induces the breakdown of the Raman polarization selection rule in 2H-TaS2, which results in the alteration of the A1g phonon mode polarization state of 2H-TaS2. This study can shed light not only on the underlying mechanisms of CDW states but also on controlling the CDW states under a variety of environmental conditions.

Electronic Supplementary Material

Download File(s)
12274_2022_5436_MOESM1_ESM.pdf (1.6 MB)

References

[1]

Gibertini, M.; Koperski, M.; Morpurgo, A. F.; Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 2019, 14, 408–419.

[2]

Wang, X. R.; Yasuda, K.; Zhang, Y.; Liu, S.; Watanabe, K.; Taniguchi, T.; Hone, J.; Fu, L.; Jarillo-Herrero, P. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nat. Nanotechnol. 2022, 17, 367–371.

[3]

Koley, S.; Mohanta, N.; Taraphder, A. Charge density wave and superconductivity in transition metal dichalcogenides. Eur. Phys. J. B 2020, 93, 77.

[4]

Stojchevska, L.; Vaskivskyi, I.; Mertelj, T.; Kusar, P.; Svetin, D.; Brazovskii, S.; Mihailovic, D. Ultrafast switching to a stable hidden quantum state in an electronic crystal. Science 2014, 344, 177–180.

[5]

Vaskivskyi, I.; Mihailovic, I. A.; Brazovskii, S.; Gospodaric, J.; Mertelj, T.; Svetin, D.; Sutar, P.; Mihailovic, D. Fast electronic resistance switching involving hidden charge density wave states. Nat. Commun. 2016, 7, 11442.

[6]

Chen, X. M.; Mazzoli, C.; Cao, Y.; Thampy, V.; Barbour, A. M.; Hu, W.; Lu, M.; Assefa, T. A.; Miao, H.; Fabbris, G. et al. Charge density wave memory in a cuprate superconductor. Nat. Commun. 2019, 10, 1435.

[7]

Liu, G.; Zhang, E. X.; Liang, C. D.; Bloodgood, M. A.; Salguero, T. T.; Fleetwood, D. M.; Balandin, A. A. Total-ionizing-dose effects on threshold switching in 1T-TaS2 charge density wave devices. IEEE Electr. Device Lett. 2017, 38, 1724–1727.

[8]

Khitun, A.; Liu, G. X.; Balandin, A. A. Two-dimensional oscillatory neural network based on room-temperature charge-density-wave devices. IEEE Trans. Nanotechnol. 2017, 16, 860–867.

[9]

Khitun, A. G.; Geremew, A. K.; Balandin, A. A. Transistor-less logic circuits implemented with 2-D charge density wave devices. IEEE Electr. Device Lett. 2018, 39, 1449–1452.

[10]

Sahoo, S.; Dutta, U.; Harnagea, L.; Sood, A. K.; Karmakar, S. Pressure-induced suppression of charge density wave and emergence of superconductivity in 1T-VSe2. Phys. Rev. B 2020, 101, 014514.

[11]

Law, K. T.; Lee, P. A. 1T-TaS2 as a quantum spin liquid. Proc. Natl. Acad. Sci. USA 2017, 114, 6996–7000.

[12]

Ma, L. G.; Ye, C.; Yu, Y. J.; Lu, X. F.; Niu, X. H.; Kim, S.; Feng, D. L.; Tománek, D.; Son, Y. W.; Chen, X. H. et al. A metallic mosaic phase and the origin of Mott-insulating state in 1T-TaS2. Nat. Commun. 2016, 7, 10956.

[13]

Xu, Z. Q.; Yang, H. X.; Song, X.; Chen, Y. Y.; Yang, H.; Liu, M.; Huang, Z. P.; Zhang, Q. Z.; Sun, J. T.; Liu, L. W. Topical review: Recent progress of charge density waves in 2D transition metal dichalcogenide-based heterojunctions and their applications. Nanotechnology 2021, 32, 492001.

[14]

Lin, D. J.; Li, S. C.; Wen, J. S.; Berger, H.; Forró, L.; Zhou, H. B.; Jia, S.; Taniguchi, T.; Watanabe, K.; Xi, X. X. et al. Patterns and driving forces of dimensionality-dependent charge density waves in 2H-type transition metal dichalcogenides. Nat. Commun. 2020, 11, 2406.

[15]

Joshi, J.; Scharf, B.; Mazin, I.; Krylyuk, S.; Campbell, D. J.; Paglione, J.; Davydov, A.; Žutić, I.; Vora, P. M. Charge density wave activated excitons in TiSe2-MoSe2 heterostructures. APL Mater. 2022, 10, 011103.

[16]

Chen, Y.; Wu, L. S.; Xu, H.; Cong, C. X.; Li, S.; Feng, S.; Zhang, H. B.; Zou, C. J.; Shang, J. Z.; Yang, S. A. et al. Visualizing the anomalous charge density wave states in graphene/NbSe2 heterostructures. Adv. Mater. 2020, 32, 2003746.

[17]

Grasset, R.; Gallais, Y.; Sacuto, A.; Cazayous, M.; Mañas-Valero, S.; Coronado, E.; Méasson, M. A. Pressure-induced collapse of the charge density wave and Higgs mode visibility in 2H-TaS2. Phys. Rev. Lett. 2019, 122, 127001.

[18]

Adam, M. L.; Zhu, H. E.; Liu, Z. F.; Cui, S. T.; Zhang, P. J.; Liu, Y.; Zhang, G. B.; Wu, X. J.; Sun, Z.; Song, L. Charge density wave phase suppression in 1T-TiSe2 through Sn intercalation. Nano Res. 2022, 15, 2643–2649.

[19]

Hall, J.; Ehlen, N.; Berges, J.; van Loon, E.; van Efferen, C.; Murray, C.; Rösner, M.; Li, J.; Senkovskiy, B. V.; Hell, M. et al. Environmental control of charge density wave order in monolayer 2H-TaS2. ACS Nano 2019, 13, 10210–10220.

[20]

Dreher, P.; Wan, W.; Chikina, A.; Bianchi, M.; Guo, H. J.; Harsh, R.; Mañas-Valero, S.; Coronado, E.; Martínez-Galera, A. J.; Hofmann, P. et al. Proximity effects on the charge density wave order and superconductivity in single-layer NbSe2. ACS Nano 2021, 15, 19430–19438.

[21]

Sanders, C. E.; Dendzik, M.; Ngankeu, A. S.; Eich, A.; Bruix, A.; Bianchi, M.; Miwa, J. A.; Hammer, B.; Khajetoorians, A. A.; Hofmann, P. Crystalline and electronic structure of single-layer TaS2. Phys. Rev. B 2016, 94, 081404.

[22]

Yang, Y. F.; Fang, S. A.; Fatemi, V.; Ruhman, J.; Navarro-Moratalla, E.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Enhanced superconductivity upon weakening of charge density wave transport in 2H-TaS2 in the two-dimensional limit. Phys. Rev. B 2018, 98, 035203.

[23]

Lefcochilos-Fogelquist, H. M.; Albertini, O. R.; Liu, A. Y. Substrate-induced suppression of charge density wave phase in monolayer 1H-TaS2 on Au (111). Phys. Rev. B 2019, 99, 174113.

[24]

Qiao, Y. B.; Li, Y. L.; Zhong, G. H.; Zeng, Z.; Qin, X. Y. Anisotropic properties of TaS2. Chinese Phys. 2007, 16, 3809–3814.

[25]

Ekoya, B. G. M.; Shan, Y. B.; Cai, Y. C.; Okombi, N. I.; Yue, X. F.; Xu, M. S.; Cong, C. X.; Hu, L. G.; Qiu, Z. J.; Liu, R. 2H tantalum disulfide nanosheets as substrates for ultrasensitive SERS-based sensing. ACS Appl. Nano Mater. 2022, 5, 8913–8920.

[26]

Baraghani, S.; Barani, Z.; Ghafouri, Y.; Mohammadzadeh, A.; Salguero, T. T.; Kargar, F.; Balandin, A. A. Charge-density-wave thin-film devices printed with chemically exfoliated 1T-TaS2 ink. ACS Nano 2022, 16, 6325–6333.

[27]

Yu, Q. M.; Zhang, Z. Y.; Qiu, S. Y.; Luo, Y. T.; Liu, Z. B.; Yang, F. N.; Liu, H. M.; Ge, S. Y.; Zou, X. L.; Ding, B. F. et al. A Ta-TaS2 monolith catalyst with robust and metallic interface for superior hydrogen evolution. Nat. Commun. 2021, 12, 6051.

[28]

Zhao, J.; Wijayaratne, K.; Butler, A.; Yang, J.; Malliakas, C. D.; Chung, D. Y.; Louca, D.; Kanatzidis, M. G.; van Wezel, J.; Chatterjee, U. Orbital selectivity causing anisotropy and particle-hole asymmetry in the charge density wave gap of 2H-TaS2. Phys. Rev. B 2017, 96, 125103.

[29]

Otto, M. R.; Pöhls, J. H.; de Cotret, L. P. R.; Stern, M. J.; Sutton, M.; Siwick, B. J. Mechanisms of electron–phonon coupling unraveled in momentum and time: The case of soft phonons in TiSe2. Sci. Adv. 2021, 7, eabf2810.

[30]

Kurzhals, P.; Kremer, G.; Jaouen, T.; Nicholson, C. W.; Heid, R.; Nagel, P.; Castellan, J. P.; Ivanov, A.; Muntwiler, M.; Rumo, M. et al. Electron-momentum dependence of electron–phonon coupling underlies dramatic phonon renormalization in YNi2B2C. Nat. Commun. 2022, 13, 228.

[31]

Taube, A.; Judek, J.; Jastrzębski, C.; Duzynska, A.; Świtkowski, K.; Zdrojek, M. Temperature-dependent nonlinear phonon shifts in a supported MoS2 monolayer. ACS Appl. Mater. Interfaces 2014, 6, 8959–8963.

[32]

Cowley, R. A. Anharmonic crystals. Rep. Prog. Phys. 1968, 31, 123–166.

[33]

Klemens, P. G. Anharmonic decay of optical phonons. Phys. Rev. 1966, 148, 845–848.

[34]

Balkanski, M.; Wallis, R. F.; Haro, E. Anharmonic effects in light scattering due to optical phonons in silicon. Phys. Rev. B 1983, 28, 1928–1934.

[35]

Menéndez, J.; Cardona, M. Temperature dependence of the first-order Raman scattering by phonons in Si, Ge, and α-Sn: Anharmonic effects. Phys. Rev. B 1984, 29, 2051–2059.

[36]

Um, Y. J.; Bang, Y.; Min, B. H.; Kwon, Y. S.; Le Tacon, M. Superconductivity-induced phonon renormalization on NaFe1−xCox As. Phys. Rev. B 2014, 89, 184510.

[37]

Klingsporn, J. M.; Jiang, N.; Pozzi, E. A.; Sonntag, M. D.; Chulhai, D.; Seideman, T.; Jensen, L.; Hersam, M. C.; Van Duyne, R. P. Intramolecular insight into adsorbate–substrate interactions via low-temperature, ultrahigh-vacuum tip-enhanced Raman spectroscopy. J. Am. Chem. Soc. 2014, 136, 3881–3887.

[38]

Hildebrandt, P.; Stockburger, M. Surface-enhanced resonance Raman spectroscopy of rhodamine 6G adsorbed on colloidal silver. J. Phys. Chem. 1984, 88, 5935–5944.

[39]

Shim, S.; Stuart, C. M.; Mathies, R. A. Resonance Raman cross-sections and vibronic analysis of rhodamine 6G from broadband stimulated Raman spectroscopy. ChemPhysChem 2008, 9, 697–699.

[40]

Iqbal, M. W.; Shahzad, K.; Akbar, R.; Hussain, G. A review on Raman finger prints of doping and strain effect in TMDCs. Microelectron. Eng. 2020, 219, 111152.

[41]

Velický, M.; Rodriguez, A.; Bouša, M.; Krayev, A. V.; Vondráček, M.; Honolka, J.; Ahmadi, M.; Donnelly, G. E.; Huang, F. M.; Abruña, H. D. et al. Strain and charge doping fingerprints of the strong interaction between monolayer MoS2 and gold. J. Phys. Chem. Lett. 2020, 11, 6112–6118.

[42]

Li, L. F.; Zhang, X.; Luan, Z. D.; Du, Z. F.; Xi, S. C.; Wang, B.; Cao, L.; Lian, C.; Yan, J. Raman vibrational spectral characteristics and quantitative analysis of H2 up to 400 °C and 40 MPa. J. Raman Spectrosc. 2018, 49, 1722–1731.

[43]

Hill, H. M.; Chowdhury, S.; Simpson, J. R.; Rigosi, A. F.; Newell, D. B.; Berger, H.; Tavazza, F.; Walker, A. R. H. Phonon origin and lattice evolution in charge density wave states. Phys. Rev. B 2019, 99, 174110.

[44]

Xi, X. X.; Zhao, L.; Wang, Z. F.; Berger, H.; Forró, L.; Shan, J.; Mak, K. F. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotechnol. 2015, 10, 765–769.

[45]

Sugai, S.; Murase, K.; Uchida, S.; Tanaka, S. Comparison of the soft modes in tantalum dichalcogenides. Phys. B+C 1981, 105, 405–409.

[46]

Zhang, X.; Qiao, X. F.; Shi, W.; Wu, J. B.; Jiang, D. S.; Tan, P. H. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 2015, 44, 2757–2785.

[47]

Xu, B.; Mao, N. N.; Zhao, Y.; Tong, L. M.; Zhang, J. Polarized Raman spectroscopy for determining crystallographic orientation of low-dimensional materials. J. Phys. Chem. Lett. 2021, 12, 7442–7452.

[48]

Kim, J.; Lee, J. U.; Cheong, H. Polarized Raman spectroscopy for studying two-dimensional materials. J. Phys.: Condens. Matter 2020, 32, 343001.

[49]

Zhao, Y.; Zheng, L. H.; Han, S. Y.; Xu, B.; Fang, Z. Y.; Zhang, J.; Tong, L. M. Abnormal intensity and polarization of Raman scattered light at edges of layered MoS2. Nano Res. 2022, 15, 6416–6421.

[50]

Dam, S.; Thakur, A.; Hussain, S.; Shekar, N. V. C.; Amarendra, G. Observation of A1g mode at the edges of MoS2 and its applications. Eur. Phys. J. Plus 2021, 136, 589.

[51]

Guo, Y.; Zhang, W. X.; Wu, H. C.; Han, J. F.; Zhang, Y. L.; Lin, S. H.; Liu, C. R.; Xu, K.; Qiao, J. S.; Ji, W. et al. Discovering the forbidden Raman modes at the edges of layered materials. Sci. Adv. 2018, 4, eaau6252.

[52]

Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 1961, 124, 1866–1878.

[53]

Miroshnichenko, A. E.; Flach, S.; Kivshar, Y. S. Fano resonances in nanoscale structures. Rev. Mod. Phys. 2010, 82, 2257–2298.

[54]

Faugeras, C.; Amado, M.; Kossacki, P.; Orlita, M.; Sprinkle, M.; Berger, C.; de Heer, W. A.; Potemski, M. Tuning the electron–phonon coupling in multilayer graphene with magnetic fields. Phys. Rev. Lett. 2009, 103, 186803.

[55]

Hasdeo, E. H.; Nugraha, A. R. T.; Dresselhaus, M. S.; Saito, R. Breit-wigner-fano line shapes in Raman spectra of graphene. Phys. Rev. B 2014, 90, 245140.

[56]

Yan, J.; Zhang, Y. B.; Kim, P.; Pinczuk, A. Electric field effect tuning of electron–phonon coupling in graphene. Phys. Rev. Lett. 2007, 98, 166802.

[57]

Hettler, S.; Sreedhara, M. B.; Serra, M.; Sinha, S. S.; Popovitz-Biro, R.; Pinkas, I.; Enyashin, A. N.; Tenne, R.; Arenal, R. YS-TaS2 and YxLa1−xS-TaS2 (0 ≤ x ≤ 1) nanotubes: A family of misfit layered compounds. ACS Nano 2020, 14, 5445–5458.

[58]

Kisoda, K.; Hangyo, M.; Nakashima, S.; Suzuki, K.; Enoki, T.; Ohno, Y. Raman scattering from misfit layer compounds (RS)xTaS2 (R identical to La, Ce, Sm or Gd; S identical to sulphur; x approximately = 1.2). J. Phys.: Condens. Matter 1995, 7, 5383–5393.

[59]

Staiger, M.; Bačić, V.; Gillen, R.; Radovsky, G.; Gartsman, K.; Tenne, R.; Heine, T.; Maultzsch, J.; Thomsen, C. Raman spectroscopy of intercalated and misfit layer nanotubes. Phys. Rev. B 2016, 94, 035430.

Nano Research
Pages 6960-6966
Cite this article:
M. Ekoya BG, Han J, Zhu J, et al. Molecular interactions induced collapse of charge density wave quantum states in 2H tantalum disulfide nanosheets. Nano Research, 2023, 16(5): 6960-6966. https://doi.org/10.1007/s12274-023-5436-1
Topics:

2313

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 12 October 2022
Revised: 20 December 2022
Accepted: 22 December 2022
Published: 10 March 2023
© Tsinghua University Press 2023
Return