AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A high-concentrated and nonflammable electrolyte for potassium ion-based dual-graphite batteries

Kexin Li1,2,§Guiyou Ma1,§Dandan Yu1( )Wen Luo1Jiaxin Li1Laishun Qin1( )Yuexiang Huang1Da Chen1( )
College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China
Liangxin College, China Jiliang University, Hangzhou 310018, China

§ Kexin Li and Guiyou Ma contributed equally to this work.

Show Author Information

Graphical Abstract

With the assistance of binder engineering, a high-safety and low-cost dual-ion battery was constructed by using the high-concentrated phosphate-based electrolyte and graphite as both the anode and cathode.

Abstract

Potassium ion-based dual-graphite batteries (KDGBs) emerge as promising devices for large-scale applications due to their high voltage, low cost, and environmental friendliness. However, conventional KPF6/carbonate-based electrolytes suffer from severe oxidation decomposition, low concentration, and flammability, which limit the capacity and cyclability of KDGBs. Herein, a nonflammable potassium bis(fluorosulfonyl)imide/triethyl phosphate (KFSI/TEP) electrolyte was designed for KDGBs. When the salt-to-solvent molar ratio increases to 1:1.3, graphite cathode operated at the cut-off potential of 5.2 V exhibits much enhanced capacity, excellent rate capability (26.4 mAh∙g−1 at 1.0 A∙g−1), and superior cyclability with 98% capacity retention after 350 cycles. Inorganic compounds-rich electrode/electrolyte interphase layers derived from the preferential decomposition of FSI anions ensure good compatibility of the 1:1.3 KFSI/TEP electrolyte with K metal and graphite anodes. Based on this electrolyte, as-assembled KDGBs show high operation voltage of 4.3 V and good cycling performance. This work provides feasibility for developing long-life and safe-operation DGBs.

Electronic Supplementary Material

Download File(s)
12274_2022_5438_MOESM1_ESM.pdf (2.2 MB)

References

[1]

Yang, K.; Jia, L. L.; Liu, X. H.; Wang, Z. J.; Wang, Y.; Li, Y. W.; Chen, H. B.; Wu, B.; Yang, L. Y.; Pan, F. Revealing the anion intercalation behavior and surface evolution of graphite in dual-ion batteries via in situ AFM. Nano Res. 2020, 13, 412–418.

[2]

Liu, Y. J.; Hu, X.; Li, J. W.; Zhong, G. B.; Yuan, J.; Zhan, H. B.; Tang, Y. B.; Wen, Z. H. Carbon-coated MoS1.5Te0.5 nanocables for efficient sodium-ion storage in non-aqueous dual-ion batteries. Nat. Commun. 2022, 13, 663.

[3]

Li, W. H.; Li, Y. M.; Liu, X. F.; Gu, Z. Y.; Liang, H. J.; Zhao, X. X.; Guo, J. Z.; Wu, X. L. All-climate and ultrastable dual-ion batteries with long life achieved via synergistic enhancement of cathode and anode interfaces. Adv. Funct. Mater. 2022, 32, 2201038.

[4]

Chen, S. H.; Kuang, Q.; Fan, H. J. Dual-carbon batteries: Materials and mechanism. Small 2020, 16, 2002803.

[5]

Ji, B. F.; Zhang, F.; Wu, N. Z.; Tang, Y. B. A dual-carbon battery based on potassium-ion electrolyte. Adv. Energy Mater. 2017, 7, 1700920.

[6]

Hou, R. L.; Liu, B.; Sun, Y. L.; Liu, L. Y.; Meng, J. N.; Levi, M. D.; Ji, H. X.; Yan, X. B. Recent advances in dual-carbon based electrochemical energy storage devices. Nano Energy 2020, 72, 104728.

[7]

Yu, D. D.; Zhang, W.; Zhang, Q.; Huang, S. M. Tuning anion chemistry enables high-voltage and stable potassium-based tellurium-graphite batteries. Nano Energy 2022, 92, 106744.

[8]

Zhu, J. J.; Li, Y. L.; Yang, B. J.; Liu, L. Y.; Li, J. S.; Yan, X. B.; He, D. Y. A dual carbon-based potassium dual ion battery with robust comprehensive performance. Small 2018, 14, 1801836.

[9]

Liu, M. Q.; Chang, L. M.; Le, Z. Y.; Jiang, J. M.; Li, J. H.; Wang, H. R.; Zhao, C. M.; Xu, T. H.; Nie, P.; Wang, L. M. Emerging potassium-ion hybrid capacitors. ChemSusChem 2020, 13, 5837–5862.

[10]

Ruan, J. F.; Mo, F. J.; Chen, Z. L.; Liu, M.; Zheng, S. Y.; Wu, R. B.; Fang, F.; Song, Y.; Sun, D. L. Rational construction of nitrogen-doped hierarchical dual-carbon for advanced potassium-ion hybrid capacitors. Adv. Energy Mater. 2020, 10, 1904045.

[11]

Yang, K.; Liu, Q. R.; Zheng, Y. P.; Yin, H.; Zhang, S. Q.; Tang, Y. B. Locally ordered graphitized carbon cathodes for high-capacity dual-ion batteries. Angew. Chem., Int. Ed. 2021, 60, 6326–6332.

[12]

Fan, L.; Liu, Q.; Chen, S. H.; Lin, K. R.; Xu, Z.; Lu, B. A. Potassium-based dual ion battery with dual-graphite electrode. Small 2017, 13, 1701011.

[13]

Zhu, J. J.; Xu, Y. T.; Fu, Y. J.; Xiao, D. W.; Li, Y. L.; Liu, L. Y.; Wang, Y.; Zhang, Q. N.; Li, J. S.; Yan, X. B. Hybrid aqueous/nonaqueous water-in-bisalt electrolyte enables safe dual ion batteries. Small 2020, 16, 1905838.

[14]

Obrezkov, F. A.; Shestakov, A. F.; Vasil’ev, S. G.; Stevenson, K. J.; Troshin, P. A. Polydiphenylamine as a promising high-energy cathode material for dual-ion batteries. J. Mater. Chem. A 2021, 9, 2864–2871.

[15]

Zhang, L.; Wang, H. Y. Intercalation of multiply solvated hexafluorophospate anion into graphite electrode from mixtures of methyl acetate, ethyl methyl, and ethylene carbonates. J. Energy Chem. 2021, 58, 233–236.

[16]

Li, X.; Ou, X. W.; Tang, Y. B. 6.0 V high-voltage and concentrated electrolyte toward high energy density K-based dual-graphite battery. Adv. Energy Mater. 2020, 10, 2002567.

[17]

Huang, Z. D.; Hou, Y.; Wang, T. R.; Zhao, Y. W.; Liang, G. J.; Li, X. L.; Guo, Y.; Yang, Q.; Chen, Z.; Li, Q. et al. Manipulating anion intercalation enables a high-voltage aqueous dual ion battery. Nat. Commun. 2021, 12, 3106.

[18]

Yu, D. D.; Zhu, Q. N.; Cheng, L. W.; Dong, S.; Zhang, X. H.; Wang, H.; Yang, N. J. Anion solvation regulation enables long cycle stability of graphite cathodes. ACS Energy Lett. 2021, 6, 949–958.

[19]

Cheng, Z. J.; Guo, L. F.; Dong, Q. Y.; Wang, C. T.; Yao, Q.; Gu, X.; Yang, J.; Qian, Y. T. Highly durable and ultrafast cycling of dual-ion batteries via in situ construction of cathode–electrolyte interphase. Adv. Energy Mater. 2022, 12, 2202253.

[20]

Wang, Y.; Zhang, Y. J.; Wang, S.; Dong, S. Y.; Dang, C. Q.; Hu, W. C.; Yu, D. Y. W. Ultrafast charging and stable cycling dual-ion batteries enabled via an artificial cathode–electrolyte interface. Adv. Funct. Mater. 2021, 31, 2102360.

[21]

Kravchyk, K. V.; Bhauriyal, P.; Piveteau, L.; Guntlin, C. P.; Pathak, B.; Kovalenko, M. V. High-energy-density dual-ion battery for stationary storage of electricity using concentrated potassium fluorosulfonylimide. Nat. Commun. 2018, 9, 4469.

[22]

Han, X. Q.; Xu, G. J.; Zhang, Z. H.; Du, X. F.; Han, P. X.; Zhou, X. H.; Cui, G. L.; Chen, L. Q. An in situ interface reinforcement strategy achieving long cycle performance of dual-ion batteries. Adv. Energy Mater. 2019, 9, 1804022.

[23]

Tan, H.; Zhai, D. Y.; Kang, F. Y.; Zhang, B. Synergistic PF6 and FSI intercalation enables stable graphite cathode for potassium-based dual ion battery. Carbon 2021, 178, 363–370.

[24]

Zheng, X. Y.; Gu, Z. Y.; Fu, J.; Wang, H. T.; Ye, X. L.; Huang, L. Q.; Liu, X. Y.; Wu, X. L.; Luo, W.; Huang, Y. H. Knocking down the kinetic barriers towards fast-charging and low-temperature sodium metal batteries. Energy Environ. Sci. 2021, 14, 4936–4947.

[25]

Holoubek, J.; Yin, Y. J.; Li, M. Q.; Yu, M. Y.; Meng, Y. S.; Liu, P.; Chen, Z. Exploiting mechanistic solvation kinetics for dual-graphite batteries with high power output at extremely low temperature. Angew. Chem., Int. Ed. 2019, 58, 18892–18897.

[26]

Naveed, A.; Yang, H. J.; Yang, J.; Nuli, Y. N.; Wang, J. L. Highly reversible and rechargeable safe Zn batteries based on a triethyl phosphate electrolyte. Angew. Chem., Int. Ed. 2019, 58, 2760–2764.

[27]

Ou, X. W.; Li, J.; Tong, X. Y.; Zhang, G.; Tang, Y. B. Highly concentrated and nonflammable electrolyte for high energy density K-based dual-ion battery. ACS Appl. Energy Mater. 2020, 3, 10202–10208.

[28]

Liu, S. L.; Mao, J. F.; Zhang, Q.; Wang, Z. J.; Pang, W. K.; Zhang, L.; Du, A. J.; Sencadas, V.; Zhang, W. C.; Guo, Z. P. An intrinsically non-flammable electrolyte for high-performance potassium batteries. Angew. Chem., Int. Ed. 2020, 59, 3638–3644.

[29]

Zeng, Z. Q.; Murugesan, V.; Han, K. S.; Jiang, X. Y.; Cao, Y. L.; Xiao, L. F.; Ai, X. P.; Yang, H. X.; Zhang, J. G.; Sushko, M. L. et al. Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries. Nat. Energy 2018, 3, 674–681.

[30]

Seggem, P.; Jetti, V. R.; Basak, P. Nonflammable and stable quasi-solid electrolytes: Demonstrating the feasibility of application in rechargeable solid-state magnesium batteries. ACS Appl. Energy Mater. 2022, 5, 6606–6617.

[31]

Jia, M. M.; Zhang, C.; Guo, Y. W.; Peng, L. S.; Zhang, X. Y.; Qian, W. W.; Zhang, L.; Zhang, S. J. Advanced nonflammable localized high-concentration electrolyte for high energy density lithium battery. Energy Environ. Mater. 2022, 5, 1294–1302.

[32]

Tsubouchi, S.; Suzuki, S.; Nishimura, K.; Okumura, T.; Abe, T. Effect of Lewis acids on graphite-electrode properties in EC-based electrolyte solutions with organophosphorus compounds. J. Electrochem. Soc. 2018, 165, A680–A687.

[33]

Yu, D. D.; Wang, H.; Zhang, W.; Dong, H. F.; Zhu, Q. N.; Yang, J.; Huang, S. Unraveling the role of ion-solvent chemistry in stabilizing small-molecule organic cathode for potassium-ion batteries. Energy Storage Mater. 2021, 43, 172–181.

[34]

Wang, G.; Yu, M. H.; Wang, J. G.; Li, D. B.; Tan, D. M.; Löffler, M.; Zhuang, X. D.; Mullen, K.; Feng, X. L. Self-activating, capacitive anion intercalation enables high-power graphite cathodes. Adv. Mater. 2018, 30, 1800533.

[35]

Read, J. A.; Cresce, A. V.; Ervin, M. H.; Xu, K. Dual-graphite chemistry enabled by a high voltage electrolyte. Energy Environ. Sci. 2014, 7, 617–620.

[36]

Qiao, Y.; Jiang, K. Z.; Li, X.; Deng, H.; He, Y. B.; Chang, Z.; Wu, S. C.; Guo, S. H.; Zhou, H. S. A hybrid electrolytes design for capacity-equivalent dual-graphite battery with superior long-term cycle life. Adv. Energy Mater. 2018, 8, 1801120.

[37]

Jiang, X. Y.; Liu, X. W.; Zeng, Z. Q.; Xiao, L. F.; Ai, X. P.; Yang, H. X.; Cao, Y. L. A nonflammable Na+-based dual-carbon battery with low-cost, high voltage, and long cycle life. Adv. Energy Mater. 2018, 8, 1802176.

[38]

Wrogemann, J. M.; Haneke, L.; Ramireddy, T.; Frerichs, J. E.; Sultana, I.; Chen, Y. I.; Brink, F.; Hansen, M. R.; Winter, M.; Glushenkov, A. M. et al. Advanced dual-ion batteries with high-capacity negative electrodes incorporating black phosphorus. Adv. Sci. 2022, 9, 2201116.

[39]

Wang, H.; Yu, D. D.; Wang, X.; Niu, Z. Q.; Chen, M. X.; Cheng, L. W.; Zhou, W.; Guo, L. Electrolyte chemistry enables simultaneous stabilization of potassium metal and alloying anode for potassium-ion batteries. Angew. Chem., Int. Ed. 2019, 58, 16451–16455.

[40]

Wang, W.; Huang, H. X.; Wang, B.; Qian, C.; Li, P. H.; Zhou, J. H.; Liang, Z. B.; Yang, C.; Guo, S. J. A new dual-ion battery based on amorphous carbon. Sci. Bull. 2019, 64, 1634–1642.

[41]

Liu, T. M.; Han, X. Q.; Zhang, Z. H.; Chen, Z.; Wang, P.; Han, P. X.; Ding, N. X.; Cui, G. L. A high concentration electrolyte enables superior cycleability and rate capability for high voltage dual graphite battery. J. Power Sources 2019, 437, 226942.

[42]

Ji, S. P.; Li, J. L.; Li, J. F.; Song, C. Y.; Wang, S.; Wang, K. X.; Hui, K. S.; Zha, C. Y.; Zheng, Y. S.; Dinh, D. A. et al. Dynamic reversible evolution of solid electrolyte interface in nonflammable triethyl phosphate electrolyte enabling safe and stable potassium-ion batteries. Adv. Funct. Mater. 2022, 32, 2200771.

[43]

Wang, Z. J.; Wang, Y. Y.; Li, B. H.; Bouwer, J. C.; Davey, K.; Lu, J.; Guo, Z. P. Non-flammable ester electrolyte with boosted stability against Li for high-performance Li metal batteries. Angew. Chem., Int. Ed. 2022, 61, e202206682.

[44]

Zhang, X. Y.; Jia, M. M.; Zhang, Q. P.; Zhang, N. N.; Wu, X. K.; Qi, S. T.; Zhang, L. LiNO3 and TMP enabled high voltage room-temperature solid-state lithium metal battery. Chem. Eng. J. 2022, 448, 137743.

[45]

Asfaw, H. D.; Kotronia, A. A polymeric cathode–electrolyte interface enhances the performance of MoS2-graphite potassium dual-ion intercalation battery. Cell Rep. Phys. Sci. 2022, 3, 100693.

[46]

Zhao, Y.; Liu, B. Z.; Yi, Y. Y.; Lian, X. Y.; Wang, M. L.; Li, S.; Yang, X. Z.; Sun, J. Y. An anode-free potassium-metal battery enabled by a directly grown graphene-modulated aluminum current collector. Adv. Mater. 2022, 34, 2202902.

[47]

Li, J. F.; Hu, Y. Y.; Xie, H. B.; Peng, J.; Fan, L.; Zhou, J.; Lu, B. A. Weak cation–solvent interactions in ether-based electrolytes stabilizing potassium-ion batteries. Angew. Chem., Int. Ed. 2022, 61, e202208291.

[48]

Li, S. W.; Zhu, H. L.; Liu, Y.; Han, Z. L.; Peng, L. F.; Li, S. P.; Yu, C.; Cheng, S. J.; Xie, J. Codoped porous carbon nanofibres as a potassium metal host for nonaqueous K-ion batteries. Nat. Commun. 2022, 13, 4911.

[49]

Yi, Y. Y.; Li, J. Q.; Gao, Z. X.; Liu, W. F.; Zhao, Y.; Wang, M. L.; Zhao, W.; Han, Y.; Sun, J. Y.; Zhang, J. Highly potassiophilic graphdiyne skeletons decorated with Cu quantum dots enable dendrite-free potassium-metal anodes. Adv. Mater. 2022, 34, 2202685.

[50]

Sui, Y. M.; Liu, C. F.; Masse, R. C.; Neale, Z. G.; Atif, M.; AlSalhi, M.; Cao, G. Z. Dual-ion batteries: The emerging alternative rechargeable batteries. Energy Storage Mater. 2020, 25, 1–32.

[51]

Küpers, V.; Dohmann, J. F.; Bieker, P.; Winter, M.; Placke, T.; Kolek, M. Opportunities and limitations of ionic liquid- and organic carbonate solvent-based electrolytes for Mg-ion-based dual-ion batteries. ChemSusChem 2021, 14, 4480–4498.

[52]

Zhang, X.; Zhu, H. Z.; He, Q.; Xiong, T.; Wang, X. P.; Xiao, Z. T.; Wang, H.; Zhao, Y.; Xu, L.; Mai, L. Q. K+ induced phase transformation of layered titanium disulfide boosts ultrafast potassium-ion storage. Adv. Funct. Mater. 2022, 32, 2205330.

Nano Research
Pages 6353-6360
Cite this article:
Li K, Ma G, Yu D, et al. A high-concentrated and nonflammable electrolyte for potassium ion-based dual-graphite batteries. Nano Research, 2023, 16(5): 6353-6360. https://doi.org/10.1007/s12274-023-5438-z
Topics:

2551

Views

9

Crossref

10

Web of Science

10

Scopus

0

CSCD

Altmetrics

Received: 25 October 2022
Revised: 05 December 2022
Accepted: 21 December 2022
Published: 16 January 2023
© Tsinghua University Press 2023
Return