AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Au/TS-1 catalyst for propylene epoxidation with H2 and O2: Effect of surface property and morphology of TS-1 zeolite

Jialun XuZhihua Zhang( )Daiyi YuWei DuNan SongXuezhi DuanXinggui Zhou( )
State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
Show Author Information

Graphical Abstract

Urea-modified titanium silicalite-1 (TS-1) zeolite with fewer surface defects and a flat-plant-like shape presents superior performance over Au-Ti catalyst for propylene epoxidation with H2 and O2.

Abstract

The catalytic performances over propylene epoxidation with H2 and O2 (HOPO process) are significantly affected by the properties (e.g., surface properties, Ti coordination, and morphology) of titanosilicate zeolite. Introducing urea into zeolite synthesis is a simple and convenient method to modify these properties of titanosilicate zeolite. Uncalcined pore-blocked titanium silicalite-1 (TS-1, i.e., TS-1-B) with the lower urea dosage possesses more defective structure and unsaturated coordinated Ti sites verified by 29Si nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) analysis, which results in a high initial activity and hydrogen efficiency; while the high surface acidity generated by these Ti species leads to a continuous decrease in the activity and the propylene oxide (PO) selectivity during the reaction. As the amount of urea gradually increases, the TS-1-B samples present the reduced surface defects and defective and unsaturated Ti species. Specially, TS-1-B-0.30U presents the weaker PO adsorption on PO-diffusion reflectance infrared Fourier transform spectra (DRIFTS), and thus results in the high stable PO formation rate and selectivity over its Au catalyst. Furthermore, a flat-plate-like shape with a shorter thickness of 100 nm along the b-axis direction is observed on the urea-modified TS-1. Compared with the conventional ellipsoidal TS-1 with crystal sizes of 200 and 500 nm, the flat-plate-like TS-1-0.30U displays the less surface defects, unsaturated Ti species, and the weaker Lewis acid, which is favorable for the desorption and intracrystalline diffusion of PO, thus reduces the occurrence of side reactions for the improved selectivity and stability. This work may provide a reference for developing titanium-containing materials with high activity and stability over HOPO reaction.

Electronic Supplementary Material

Download File(s)
12274_2022_5440_MOESM1_ESM.pdf (3.3 MB)

References

[1]
Baer, H.; Bergamo, M.; Forlin, A.; Pottenger, L. H.; Lindner, J. Propylene oxide. In Ullmann's Encyclopedia of Industrial Chemistry; Ley, C., Eds.; Wiley-VCH: Weinheim, 2012.
[2]

Du, W.; Zhang, Z. H.; Duan, X. Z.; Zhou, X. G. A review on kinetics and reactor concept design of propylene epoxidation using H2 and O2. CIESC J. 2021, 72, 116–131.

[3]

Haruta, M.; Uphade, B. S.; Tsubota, S.; Miyamoto, A. Selective oxidation of propylene over gold deposited on titanium-based oxides. Res. Chem. Intermed. 1998, 24, 329–336.

[4]

Hayashi, T.; Tanaka, K.; Haruta, M. Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen. J. Catal. 1998, 178, 566–575.

[5]

Min, B. K.; Friend, C. M. Heterogeneous gold-based catalysis for green chemistry: Low-temperature CO oxidation and propene oxidation. Chem. Rev. 2007, 107, 2709–2724.

[6]

Qi, C. X. The production of propylene oxide over nanometer Au catalysts in the presence of H2 and O2. Gold Bull. 2008, 41, 224–234.

[7]

Nguyen, V. H.; Nguyen, B. S.; Hu, C.; Sharma, A.; Vo, D. V. N.; Jin, Z.; Shokouhimehr, M.; Jang, H. W.; Kim, S. Y.; Le, Q. V. Advances in designing Au nanoparticles for catalytic epoxidation of propylene with H2 and O2. Catalysts 2020, 10, 442.

[8]

Chowdhury, B.; Bravo-Suárez, J. J.; Mimura, N.; Lu, J. Q.; Bando, K. K.; Tsubota, S.; Haruta, M. In situ UV–vis and EPR study on the formation of hydroperoxide species during direct gas phase propylene epoxidation over Au/Ti-SiO2 catalyst. J. Phys. Chem. B 2006, 110, 22995–22999.

[9]

Bravo-Suárez, J.; Bando, K.; Fujitani, T.; Oyama, S. Mechanistic study of propane selective oxidation with H2 and O2 on Au/TS-1. J. Catal. 2008, 257, 32–42.

[10]

Bravo-Suárez, J. J.; Bando, K. K.; Lu, J. Q.; Haruta, M.; Fujitani, T.; Oyama, T. Transient technique for identification of true reaction intermediates: Hydroperoxide species in propylene epoxidation on gold/titanosilicate catalysts by X-ray absorption fine structure spectroscopy. J. Phys. Chem. C 2008, 112, 1115–1123.

[11]

Song, Z. N.; Feng, X.; Liu, Y. B.; Yang, C. H.; Zhou, X. G. Advances in manipulation of catalyst structure and relationship of structure-performance for direct propene epoxidation with H2 and O2. Prog. Chem. 2016, 28, 1762–1773.

[12]

Huang, J. H.; Haruta, M. Gas-phase propene epoxidation over coinage metal catalysts. Res. Chem. Intermed. 2012, 38, 1–24.

[13]

Liu, Y. J.; Zhao, C. Y.; Sun, B.; Zhu, H. W.; Xu, W. Preparation and modification of Au/TS-1 catalyst in the direct epoxidation of propylene with H2 and O2. Appl. Catal. A 2021, 624, 118329.

[14]

Lee, W. S.; Akatay, M. C.; Stach, E. A.; Ribeiro, F. H.; Delgass, W. N. Reproducible preparation of Au/TS-1 with high reaction rate for gas phase epoxidation of propylene. J. Catal. 2012, 287, 178–189.

[15]

Lee, W. S.; Lai, L. C.; Cem Akatay, M.; Stach, E. A.; Ribeiro, F. H.; Delgass, W. N. Probing the gold active sites in Au/TS-1 for gas-phase epoxidation of propylene in the presence of hydrogen and oxygen. J. Catal. 2012, 296, 31–42.

[16]

Huang, J. H.; Takei, T.; Ohashi, H.; Haruta, M. Propene epoxidation with oxygen over gold clusters: Role of basic salts and hydroxides of alkalis. Appl. Catal. A 2012, 435–436, 115–122.

[17]

Feng, X.; Duan, X. Z.; Qian, G.; Zhou, X. G.; Chen, D.; Yuan, W. K. Au nanoparticles deposited on the external surfaces of TS-1: Enhanced stability and activity for direct propylene epoxidation with H2 and O2. Appl. Catal. B 2014, 150–151, 396–401.

[18]

Lee, W. S.; Akatay, M. C.; Stach, E. A.; Ribeiro, F. H.; Delgass, W. N. Gas-phase epoxidation of propylene in the presence of H2 and O2 over small gold ensembles in uncalcined TS-1. J. Catal. 2014, 313, 104–112.

[19]

Hong, Y. L.; Huang, J. L.; Zhan, G. W.; Li, Q. B. Biomass-modified Au/TS-1 as highly efficient and stable nanocatalysts for propene epoxidation with O2 and H2. Ind. Eng. Chem. Res. 2019, 58, 21953–21960.

[20]

Wang, G.; Cao, Y. Q.; Zhang, Z. H.; Xu, J. L.; Lu, M. K.; Qian, G.; Duan, X. Z.; Yuan, W. K.; Zhou, X. G. Surface engineering and kinetics behaviors of Au/uncalcined TS-1 catalysts for propylene epoxidation with H2 and O2. Ind. Eng. Chem. Res. 2019, 58, 17300–17307.

[21]

Zhang, Z. H.; Zhao, X.; Wang, G.; Xu, J. L.; Lu, M. K.; Tang, Y. Q.; Fu, W. Z.; Duan, X. Z.; Qian, G.; Chen, D. et al. Uncalcined TS-2 immobilized Au nanoparticles as a bifunctional catalyst to boost direct propylene epoxidation with H2 and O2. AIChE J. 2020, 66, e16815.

[22]

Zhang, Z. H.; Du, W.; Duan, X. Z.; Zhou, X. G. Au nanoparticles immobilized on surface modified TS-1-B as high-efficiency bifunctional catalyst for propylene epoxidation with H2 and O2. CIESC J. 2021, 72, 3613–3625.

[23]

Xu, J. L.; Zhang, Z. H.; Wang, G.; Duan, X. Z.; Qian, G.; Zhou, X. G. Zeolite crystal size effects of Au/uncalcined TS-1 bifunctional catalysts on direct propylene epoxidation with H2 and O2. Chem. Eng. Sci. 2020, 227, 115907.

[24]

Wang, G.; Du, W.; Duan, X. Z.; Cao, Y. Q.; Zhang, Z. H.; Xu, J. L.; Chen, W. Y.; Qian, G.; Yuan, W. K.; Zhou, X. G. et al. Mechanism-guided elaboration of ternary Au-Ti-Si sites to boost propylene oxide formation. Chem Catal. 2021, 1, 885–895.

[25]

Fan, W. B.; Duan, R. G.; Yokoi, T.; Wu, P.; Kubota, Y.; Tatsumi, T. Synthesis, crystallization mechanism, and catalytic properties of titanium-rich TS-1 free of extraframework titanium species. J. Am. Chem. Soc. 2008, 130, 10150–10164.

[26]

She, H. H.; Ding, G. Q.; Li, X. Q.; Wang, H. X.; Cao, D. B.; Zhu, Y. L.; Li, Y. W. Effect of ammonium salt on the distribution of titanium species in the synthesis of TS-1 zeolites. J. Fuel Chem. Technol. 2021, 49, 1148–1160.

[27]

Yang, G. J.; Han, J.; Qiu, Z. Y.; Chen, X. X.; Feng, Z. C.; Yu, J. H. An amino acid-assisted approach to fabricate nanosized hierarchical TS-1 zeolites for efficient oxidative desulfurization. Inorg. Chem. Front. 2020, 7, 1975–1980.

[28]

Shan, Z. C.; Wang, H.; Meng, X. J.; Liu, S. Y.; Wang, L.; Wang, C. Y.; Li, F.; Lewis, J. P.; Xiao, F. S. Designed synthesis of TS-1 crystals with controllable b-oriented length. Chem. Commun. 2011, 47, 1048–1050.

[29]

Lin, D.; Feng, X.; Liu, Y. B.; Chen, X. B.; Yang, C. H. Research progress on the controllable synthesis of high-performance titanium silicalite and its catalytic propene epoxidation with gaseous hydrogen and oxygen. Chem. Ind. Eng. Prog. 2022, 41, 2389–2403.

[30]

Li, Z. S.; Ma, W. H.; Zhong, Q. Effect of core–shell support on Au/S-1/TS-1 for direct propylene epoxidation and design of catalyst with higher activity. Ind. Eng. Chem. Res. 2019, 58, 4010–4016.

[31]

Shi, J.; Zhao, G. L.; Teng, J. W.; Wang, Y. D.; Tang, Y.; Xie, Z. K. Advances in the research of MFI zeolite morphology. Prog. Chem. 2014, 26, 545–552.

[32]
Taramasso, M.; Perego, G.; Notari, B. Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides. U. S. Patent 4,410,501, Oct. 18, 1983.
[33]

Li, N. X.; Chen, Y.; Shen, Q. H.; Yang, B.; Liu, M.; Wei, L. F.; Tian, W.; Zhou, J. C. TS-1 supported highly dispersed sub-5 nm gold nanoparticles toward direct propylene epoxidation using H2 and O2. J. Solid State Chem. 2018, 261, 92–102.

[34]

Na, K.; Jo, C.; Kim, J.; Ahn, W. S.; Ryoo, R. MFI titanosilicate nanosheets with single-unit-cell thickness as an oxidation catalyst using peroxides. ACS Catal. 2011, 1, 901–907.

[35]

Wang, B. R.; Lin, M.; Peng, X. X.; Zhu, B.; Shu, X. T. Hierarchical TS-1 synthesized effectively by post-modification with TPAOH and ammonium hydroxide. RSC Adv. 2016, 6, 44963–44971.

[36]

Vayssilov, G. N. Structural and physicochemical features of titanium silicalites. Catal. Rev. 1997, 39, 209–251.

[37]

Drago, R. S.; Dias, S. C.; McGilvray, J. M.; Mateus, A. L. M. L. Acidity and hydrophobicity of TS-1. J. Phys. Chem. B 1998, 102, 1508–1514.

[38]

Zuo, Y.; Wang, X. S.; Guo, X. W. Synthesis of titanium silicalite-1 with small crystal size by using mother liquid of titanium silicalite-1 as seed. Ind. Eng. Chem. Res. 2011, 50, 8485–8491.

[39]

Kim, S. K.; Reddy, B. M.; Park, S. E. High-performance microwave synthesized mesoporous TS-1 zeolite for catalytic oxidation of cyclic olefins. Ind. Eng. Chem. Res. 2018, 57, 3567–3574.

[40]

Geobaldo, F.; Bordiga, S.; Zecchina, A.; Giamello, E.; Leofanti, G.; Petrini, G. DRS UV–Vis and EPR spectroscopy of hydroperoxo and superoxo complexes in titanium silicalite. Catal. Lett. 1992, 16, 109–115.

[41]

Parker, W. O.; Millini, R. Ti coordination in titanium silicalite-1. J. Am. Chem. Soc. 2006, 128, 1450–1451.

[42]

Huang, D. G.; Zhang, X.; Chen, B. H.; Chao, Z. S. Ethanol-assistant synthesis of TS-1 containing no extra-framework Ti species. Catal. Today 2010, 158, 510–514.

[43]

Li, W. Q.; Qiu, M. H.; Li, W. T.; Ge, L. X.; Zhang, K.; Chen, X. Q. Au supported defect free TS-1 for enhanced performance of gas phase propylene epoxidation with H2 and O2. Sustainable Energy Fuels 2022, 6, 2462–2470.

[44]

Zecchina, A.; Bordiga, S.; Spoto, G.; Marchese, L.; Petrini, G.; Leofanti, G.; Padovan, M. Silicalite characterization. 1. Structure, adsorptive capacity, and IR spectroscopy of the framework and hydroxyl modes. J. Phys. Chem. 1992, 96, 4985–4990.

[45]

Ravishankar, R.; Kirschhock, C.; Schoeman, B. J.; Vanoppen, P.; Grobet, P. J.; Storck, S.; Maier, W. F.; Martens, J. A.; Schryver, F. C. D.; Jacobs, P. A. Physicochemical characterization of silicalite-1 nanophase material. J. Phys. Chem. B 1998, 102, 2633–2639.

[46]

Camblor, M. A.; Corma, A.; Pérez-Pariente, J. Infrared spectroscopic investigation of titanium in zeolites. A new assignment of the 960 cm−1 band. J. Chem. Soc., Chem. Commun. 1993, 557–559.

[47]

Duprey, E.; Beaunier, P.; Springuel-Huet, M. A.; Bozon-Verduraz, F.; Fraissard, J.; Manoli, J. M.; Brégeault, J. M. Characterization of catalysts based on titanium silicalite, TS-1, by physicochemical techniques. J. Catal. 1997, 165, 22–32.

[48]

Ricchiardi, G.; Damin, A.; Bordiga, S.; Lamberti, C.; Spanò, G.; Rivetti, F.; Zecchina, A. Vibrational structure of titanium silicate catalysts. A spectroscopic and theoretical study. J. Am. Chem. Soc. 2001, 123, 11409–11419.

[49]

Blasco, T.; Camblor, M. A.; Corma, A.; Esteve, P.; Guil, J. M.; Martínez, A.; Perdigón-Melón, J. A.; Valencia, S. Direct synthesis and characterization of hydrophobic aluminum-free Ti-beta zeolite. J. Phys. Chem. B 1998, 102, 75–88.

[50]

Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl. Chem. 2015, 87, 1051–1069.

[51]

Feng, X.; Duan, X. Z.; Yang, J.; Qian, G.; Zhou, X. G.; Chen, D.; Yuan, W. K. Au/uncalcined TS-1 catalysts for direct propene epoxidation with H2 and O2: Effects of Si/Ti molar ratio and Au loading. Chem. Eng. J. 2015, 278, 234–239.

[52]

Palčić, A.; Moldovan, S.; El Siblani, H.; Vicente, A.; Valtchev, V. Defect sites in zeolites: Origin and healing. Adv. Sci. 2022, 9, 2104414.

[53]

Bai, R. S.; Navarro, M. T.; Song, Y.; Zhang, T. J.; Zou, Y. C.; Feng, Z. C.; Zhang, P.; Corma, A.; Yu, J. H. Titanosilicate zeolite precursors for highly efficient oxidation reactions. Chem. Sci. 2020, 11, 12341–12349.

[54]

Wells, D. H.; Delgass, W. N.; Thomson, K. T. Evidence of defect-promoted reactivity for epoxidation of propylene in titanosilicate (TS-1) catalysts: A DFT study. J. Am. Chem. Soc. 2004, 126, 2956–2962.

[55]

Tang, Z. M.; Yu, Y. K.; Liu, W.; Chen, Z.; Wang, R.; Liu, H. X.; Wu, H. H.; Liu, Y. M.; He, M. Y. Deboronation-assisted construction of defective Ti(OSi)3OH species in MWW-type titanosilicate and their enhanced catalytic performance. Catal. Sci. Technol. 2020, 10, 2905–2915.

[56]

Song, Z. N.; Yuan, J. C.; Cai, Z. P.; Lin, D.; Feng, X.; Sheng, N.; Liu, Y. B.; Chen, X. B.; Jin, X.; Chen, D. et al. Engineering three-layer core–shell S-1/TS-1@dendritic-SiO2 supported Au catalysts towards improved performance for propene epoxidation with H2 and O2. Green Energy Environ. 2020, 5, 473–483.

[57]

Feng, X.; Sheng, N.; Liu, Y. B.; Chen, X. B.; Chen, D.; Yang, C. H.; Zhou, X. G. Simultaneously enhanced stability and selectivity for propene epoxidation with H2 and O2 on Au catalysts supported on nano-crystalline mesoporous TS-1. ACS Catal. 2017, 7, 2668–2675.

[58]

Song, Z. N.; Feng, X.; Sheng, N.; Lin, D.; Li, Y. C.; Liu, Y. B.; Chen, X. B.; Chen, D.; Zhou, X. G.; Yang, C. H. Cost-efficient core–shell TS-1/silicalite-1 supported Au catalysts: Towards enhanced stability for propene epoxidation with H2 and O2. Chem. Eng. J. 2019, 377, 119927.

[59]

Stakheev, A. Y.; Shpiro, E. S.; Apijok, J. XPS and XAES study of titania-silica mixed oxide system. J. Phys. Chem. 1993, 97, 5668–5672.

[60]

Mul, G.; Zwijnenburg, A.; van der Linden, B.; Makkee, M.; Moulijn, J. A. Stability and selectivity of Au/TiO2 and Au/TiO2/SiO2 catalysts in propene epoxidation: An in situ FT-IR study. J. Catal. 2001, 201, 128–137.

[61]

Pang, C. L.; Xiong, J. H.; Li, G. Y.; Hu, C. W. Direct ring C–H bond activation to produce cresols from toluene and hydrogen peroxide catalyzed by framework titanium in TS-1. J. Catal. 2018, 366, 37–49.

[62]

Kanungo, S.; Keshri, K. S.; van Hoof, A. J. F.; d’Angelo, M. F. N.; Schouten, J. C.; Nijhuis, T. A.; Hensen, E. J. M.; Chowdhury, B. Silylation enhances the performance of Au/Ti–SiO2 catalysts in direct epoxidation of propene using H2 and O2. J. Catal. 2016, 344, 434–444.

[63]

Guo, Q.; Sun, K. J.; Feng, Z. C.; Li, G. N.; Guo, M. L.; Fan, F. T.; Li, C. A thorough investigation of the active titanium species in TS-1 zeolite by in situ UV resonance Raman spectroscopy. Chem.—Eur. J. 2012, 18, 13854–13860.

[64]

Wang, Y. Y.; Li, L.; Bai, R. S.; Gao, S. Q.; Feng, Z. C.; Zhang, Q.; Yu, J. H. Amino acid-assisted synthesis of TS-1 zeolites containing highly catalytically active TiO6 species. Chin. J. Catal. 2021, 42, 2189–2196.

[65]

Li, C.; Xiong, G.; Liu, J. K.; Ying, P. L.; Xin, Q.; Feng, Z. C. Identifying framework titanium in TS-1 zeolite by UV resonance Raman spectroscopy. J. Phys. Chem. B 2001, 105, 2993–2997.

[66]

Yang, G.; Lan, X. J.; Zhuang, J. Q.; Ma, D.; Zhou, L. J.; Liu, X. C.; Han, X. W.; Bao, X. H. Acidity and defect sites in titanium silicalite catalyst. Appl. Catal. A 2008, 337, 58–65.

[67]

Feng, X.; Chen, D.; Zhou, X. G. Thermal stability of TPA template and size-dependent selectivity of uncalcined TS-1 supported Au catalyst for propene epoxidation with H2 and O2. RSC Adv. 2016, 6, 44050–44056.

[68]

Zhang, T.; Chen, X. X.; Chen, G. R.; Chen, M. Y.; Bai, R. S.; Jia, M. J.; Yu, J. H. Synthesis of anatase-free nano-sized hierarchical TS-1 zeolites and their excellent catalytic performance in alkene epoxidation. J. Mater. Chem. A 2018, 6, 9473–9479.

[69]

Schwieger, W.; Machoke, A. G.; Weissenberger, T.; Inayat, A.; Selvam, T.; Klumpp, M.; Inayat, A. Hierarchy concepts: Classification and preparation strategies for zeolite containing materials with hierarchical porosity. Chem. Soc. Rev. 2016, 45, 3353–3376.

[70]

Lv, G. J.; Deng, S. L.; Yi, Z.; Zhang, X. B.; Wang, F. M.; Li, H. C.; Zhu, Y. Q. One-pot synthesis of framework W-doped TS-1 zeolite with robust Lewis acidity for effective oxidative desulfurization. Chem. Commun. 2019, 55, 4885–4888.

[71]

Sheng, N.; Liu, Z. K.; Song, Z. N.; Lin, D.; Feng, X.; Liu, Y. B.; Chen, X. B.; Chen, D.; Zhou, X. G.; Yang, C. H. Enhanced stability for propene epoxidation with H2 and O2 over wormhole-like hierarchical TS-1 supported Au nanocatalyst. Chem. Eng. J. 2019, 377, 119954.

[72]

Wang, G.; Duan, X. Z.; Yuan, W. K.; Zhou, X. G. Mechanistic insights into catalytic isomerization of propylene oxide over TS-1. CIESC J. 2021, 72, 5150–5158.

Nano Research
Pages 6278-6289
Cite this article:
Xu J, Zhang Z, Yu D, et al. Au/TS-1 catalyst for propylene epoxidation with H2 and O2: Effect of surface property and morphology of TS-1 zeolite. Nano Research, 2023, 16(5): 6278-6289. https://doi.org/10.1007/s12274-023-5440-5
Topics:
Part of a topical collection:

3740

Views

11

Crossref

11

Web of Science

11

Scopus

1

CSCD

Altmetrics

Received: 30 August 2022
Revised: 28 November 2022
Accepted: 26 December 2022
Published: 26 March 2023
© Tsinghua University Press 2023
Return