AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Realizing a “solid to solid” process via in situ cathode electrolyte interface (CEI) by solvent-in-salt electrolyte for Li-S batteries

Jiajun Huang1,2,§Mengli Tao1,2,§Weifeng Zhang1,2Guangli Zheng1,2Li Du1,2Zhiming Cui1,2Xiujun Wang1,2Zhenxing Liang1,2Shijun Liao1,2Huiyu Song1,2( )
Guangdong Provincial Key Laboratory of Fuel Cell Technology, Guangzhou 510641, China
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China

§ Jiajun Huang and Mengli Tao contributed equally to this work.

Show Author Information

Graphical Abstract

In situ synthesis of cathode electrolyte interface (CEI) film via solvent-in-salt (SIS) electrolyte in lithuim-sulfur batteries, converting sulfur to a solid-phase conversion mechanism and eliminate the ‘shuttle effect’.

Abstract

Lithium-sulfur batteries (LSBs) are regarded as the most promising next-generation energy system due to their high theoretical energy density. However, LSBs suffer the “shuttle effect” if undergoing the solid–liquid–solid sulfur conversion process during cycling. Herein, we design a solvent-in-salt (SIS) electrolyte with co-solvent vinylene carbonate (VC) to synthesize an in situ dense cathode electrolyte interface (CEI) and successfully change sulfur conversion into a solid–solid way to avoid shuttle effect by separating the contact of sulfur and ether solvent. Dense CEI is formed at the beginning of first discharge by the combined action of SIS electrolyte and filmogen VC. Experiments and simulations show that SIS electrolyte controls the initial formed lithium polysulfides (LiPSs) to stay very closely on the cathode surface, and then converts them into a dense CEI film. As a result, Coulombic efficiency (above 99%) and cycling performance of LSBs are improved. Furthermore, the in situ dense CEI can nearly stop the self-discharge of LSBs, and enable the LSBs to work under a pretty lean electrolyte condition.

Electronic Supplementary Material

Download File(s)
12274_2023_5443_MOESM1_ESM.pdf (2.1 MB)
12274_2023_5443_MOESM2_ESM.pdf (1.3 MB)

References

[1]

Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.

[2]

Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018–3032.

[3]

Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.

[4]

Conder, J.; Bouchet, R.; Trabesinger, S.; Marino, C.; Gubler, L.; Villevieille, C. Direct observation of lithium polysulfides in lithium-sulfur batteries using operando X-ray diffraction. Nat. Energy 2017, 2, 17069.

[5]

Chung, S. H.; Manthiram, A. Lithium-sulfur batteries with the lowest self-discharge and the longest shelf life. ACS Energy Lett. 2017, 2, 1056–1061.

[6]

Liu, T.; Li, H. J.; Yue, J. M.; Feng, J. N.; Mao, M. L.; Zhu, X. Z.; Hu, Y. S.; Li, H.; Huang, X. J.; Chen, L. Q. et al. Ultralight electrolyte for high-energy lithium-sulfur pouch cells. Angew. Chem., Int. Ed. 2021, 60, 17547–17555.

[7]

Zhang, S. G.; Ueno, K.; Dokko, K.; Watanabe, M. Recent advances in electrolytes for lithium-sulfur batteries. Adv. Energy Mater. 2015, 5, 1500117.

[8]

Zhou, G. M.; Chen, H.; Cui, Y. Formulating energy density for designing practical lithium-sulfur batteries. Nat. Energy 2022, 7, 312–319.

[9]

Zhao, M.; Li, B. Q.; Peng, H. J.; Yuan, H.; Wei, J. Y.; Huang, J. Q. Lithium-sulfur batteries under lean electrolyte conditions: Challenges and opportunities. Angew. Chem., Int. Ed. 2020, 59, 12636–12652.

[10]

Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.

[11]

Li, Z.; Wu, H. B.; Lou, X. W. Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium-sulfur batteries. Energy Environ. Sci. 2016, 9, 3061–3070.

[12]

Pei, F.; An, T. H.; Zang, J.; Zhao, X. J.; Fang, X. L.; Zheng, M. S.; Dong, Q. F.; Zheng, N. F. From hollow carbon spheres to N-doped hollow porous carbon bowls: Rational design of hollow carbon host for Li-S batteries. Adv. Energy Mater. 2016, 6, 1502539.

[13]

Kim, S.; Song, H.; Jeong, Y. Flexible catholyte@carbon nanotube film electrode for high-performance lithium sulfur battery. Carbon 2017, 113, 371–378.

[14]

Chen, H.; Yang, Y. F.; Boyle, D. T.; Jeong, Y. K.; Xu, R.; de Vasconcelos, L. S.; Huang, Z. J.; Wang, H. S.; Wang, H. X.; Huang, W. X. et al. Free-standing ultrathin lithium metal-graphene oxide host foils with controllable thickness for lithium batteries. Nat. Energy 2021, 6, 790–798.

[15]

Baumann, A. E.; Burns, D. A.; Díaz, J. C.; Thoi, V. S. Lithiated defect sites in Zr metal-organic framework for enhanced sulfur utilization in Li-S batteries. ACS Appl. Mater. Interfaces 2018, 11, 2159–2167.

[16]

Lu, Y. Q.; Wu, Y. J.; Sheng, T.; Peng, X. X.; Gao, Z. G.; Zhang, S. J.; Deng, L.; Nie, R.; Światowska, J.; Li, J. T. et al. Novel sulfur host composed of cobalt and porous graphitic carbon derived from MOFs for the high-performance Li-S battery. ACS Appl. Mater. Interfaces 2018, 10, 13499–13508.

[17]

Baumann, A. E.; Han, X.; Butala, M. M.; Thoi, V. S. Lithium thiophosphate functionalized zirconium MOFs for Li-S batteries with enhanced rate capabilities. J. Am. Chem. Soc. 2019, 141, 17891–17899.

[18]

Wang, S. L.; Liang, Y.; Dai, T. T.; Liu, Y. L.; Sui, Z.; Tian, X. L.; Chen, Q. Cationic covalent-organic framework for sulfur storage with high-performance in lithium-sulfur batteries. J. Colloid Interface Sci. 2021, 591, 264–272.

[19]

Liang, X.; Hart, C.; Pang, Q.; Garsuch, A.; Weiss, T.; Nazar, L. F. A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat. Commun. 2015, 6, 5682.

[20]

Liang, J.; Yin, L. C.; Tang, X. N.; Yang, H. C.; Yan, W. S.; Song, L.; Cheng, H. M.; Li, F. Kinetically enhanced electrochemical redox of polysulfides on polymeric carbon nitrides for improved lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2016, 8, 25193–25201.

[21]

Peng, H. J.; Zhang, G.; Chen, X.; Zhang, Z. W.; Xu, W. T.; Huang, J. Q.; Zhang, Q. Enhanced electrochemical kinetics on conductive polar mediators for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2016, 55, 12990–12995.

[22]

Deng, D. R.; Xue, F.; Jia, Y. J.; Ye, J. C.; Bai, C. D.; Zheng, M. S.; Dong, Q. F. Co4N nanosheet assembled mesoporous sphere as a matrix for ultrahigh sulfur content lithium-sulfur batteries. ACS Nano 2017, 11, 6031–6039.

[23]

Cai, W. L.; Li, G. R.; Zhang, K. L.; Xiao, G. N.; Wang, C.; Ye, K. F.; Chen, Z. W.; Zhu, Y. C.; Qian, Y. T. Conductive nanocrystalline niobium carbide as high-efficiency polysulfides tamer for lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1704865.

[24]

Li, G. X.; Liu, Z.; Huang, Q. Q.; Gao, Y.; Regula, M.; Wang, D. W.; Chen, L. Q.; Wang, D. H. Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects. Nat. Energy 2018, 3, 1076–1083.

[25]

Qiu, S. S.; Liang, X. Q.; Li, Y.; Xia, X. H.; Chen, M. H. Recent advance on Co-based materials for polysulfide catalysis toward promoted lithium-sulfur batteries. Nano Select 2022, 3, 298–319.

[26]

Liang, X. Q.; Cai, J. Y.; Qiu, S. S.; Niu, S. W.; Liu, Y. L.; Wang, X.; Wang, G. M.; Chen, Z.; Chen, M. H. Bidirectional catalyst design for lithium-sulfur batteries: Phase regulation cooperates with N-doping. J. Mater. Chem. A 2022, 10, 23780–23789.

[27]

Qiu, S. S.; Liang, X. Q.; Niu, S. W.; Chen, Q. G.; Wang, G. M.; Chen, M. M. Quantitative defect regulation of heterostructures for sulfur catalysis toward fast and long lifespan lithium-sulfur batteries. Nano Res. 2022, 15, 7925–7932.

[28]

Ye, J. C.; Chen, J. J.; Yuan, R. M.; Deng, D. R.; Zheng, M. S.; Cronin, L.; Dong, Q. F. Strategies to explore and develop reversible redox reactions of Li-S in electrode architectures using silver-polyoxometalate clusters. J. Am. Chem. Soc. 2018, 140, 3134–3138.

[29]

Hu, Y.; Hu, A. J.; Wang, J. W.; Niu, X. B.; Zhou, M. J.; Chen, W.; Lei, T. Y.; Huang, J. W.; Li, Y. Y.; Xue, L. X. et al. Strong intermolecular polarization to boost polysulfide conversion kinetics for high-performance lithium-sulfur batteries. J. Mater. Chem. A 2021, 9, 9771–9779.

[30]

Li, X. Y.; Feng, S.; Zhao, C. X.; Cheng, Q.; Chen, Z. X.; Sun, S. Y.; Chen, X.; Zhang, X. Q.; Li, B. Q.; Huang, J. Q. et al. Regulating lithium salt to inhibit surface gelation on an electrocatalyst for high-energy-density lithium-sulfur batteries. J. Am. Chem. Soc. 2022, 144, 14638–14646.

[31]

Shen, Z. Y.; Zhang, W. D.; Mao, S. L.; Li, S. Y.; Wang, X. Y.; Lu, Y. Y. Tailored electrolytes enabling practical lithium-sulfur full batteries via interfacial protection. ACS Energy Lett. 2021, 6, 2673–2681.

[32]

Lin, Y. X.; Zheng, J.; Wang, C. S.; Qi, Y. The origin of the two-plateaued or one-plateaued open circuit voltage in Li-S batteries. Nano Energy 2020, 75, 104915.

[33]

Huang, F. F.; Gao, L. J.; Zou, Y. P.; Ma, G. Q.; Zhang, J. J.; Xu, S. Q.; Li, Z. X.; Liang, X. Akin solid–solid biphasic conversion of a Li-S battery achieved by coordinated carbonate electrolytes. J. Mater. Chem. A 2019, 7, 12498–12506.

[34]

Yang, H. J.; Qiao, Y.; Chang, Z.; He, P.; Zhou, H. S. Designing cation-solvent fully coordinated electrolyte for high-energy-density lithium-sulfur full cell based on solid–solid conversion. Angew. Chemie 2021, 133, 17867–17875.

[35]

Xin, S.; Gu, L.; Zhao, N. H.; Yin, Y. X.; Zhou, L. J.; Guo, Y. G.; Wan, L. J. Smaller sulfur molecules promise better lithium-sulfur batteries. J. Am. Chem. Soc. 2012, 134, 18510–18513.

[36]

Zhu, Q. Z.; Zhao, Q.; An, Y. B.; Anasori, B.; Wang, H. R.; Xu, B. Ultra-microporous carbons encapsulate small sulfur molecules for high performance lithium-sulfur battery. Nano Energy 2017, 33, 402–409.

[37]

Zhao, M.; Li, B. Q.; Zhang, X. Q.; Huang, J. Q.; Zhang, Q. A perspective toward practical lithium-sulfur batteries. ACS Cent. Sci. 2020, 6, 1095–1104.

[38]

Liao, K. X.; Chen, S. T.; Wei, H. H.; Fan, J. C.; Xu, Q. J.; Min, Y. L. Micropores of pure nanographite spheres for long cycle life and high-rate lithium-sulfur batteries. J. Mater. Chem. A 2018, 6, 23062–23070.

[39]

Chen, X.; Yuan, L. X.; Li, Z.; Chen, S. J.; Ji, H. J.; Qin, Y. F.; Wu, L. S.; Shen, Y.; Wang, L. B.; Hu, J. P. et al. Realizing an applicable “solid→solid” cathode process via a transplantable solid electrolyte interface for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2019, 11, 29830–29837.

[40]

Han, B.; Zhang, Z.; Zou, Y. C.; Xu, K.; Xu, G. Y.; Wang, H.; Meng, H.; Deng, Y. H.; Li, J.; Gu, M. Poor stability of Li2CO3 in the solid electrolyte interphase of a lithium-metal anode revealed by cryo-electron microscopy. Adv. Mater. 2021, 33, 2100404.

[41]

He, F.; Wu, X. J.; Qian, J. F.; Cao, Y. L.; Yang, H. X.; Ai, X. P.; Xia, D. G. Building a cycle-stable sulphur cathode by tailoring its redox reaction into a solid-phase conversion mechanism. J. Mater. Chem. A 2018, 6, 23396–23407.

[42]

Suo, L. M.; Hu, Y. S.; Li, H.; Armand, M.; Chen, L. Q. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 2013, 4, 1481.

[43]

Li, C. Y.; Li, Y. Y.; Fan, Y. X.; Wang, F.; Lei, T. Y.; Chen, W.; Hu, A. J.; Xue, L. X.; Huang, J. W.; Wu, C. Y. et al. Mapping techniques for the design of lithium-sulfur batteries. Small 2022, 18, 2106657.

[44]

Peng, H. J.; Zhang, Q. Designing host materials for sulfur cathodes: From physical confinement to surface chemistry. Angew. Chem., Int. Ed. 2015, 54, 11018–11020.

Nano Research
Pages 5018-5025
Cite this article:
Huang J, Tao M, Zhang W, et al. Realizing a “solid to solid” process via in situ cathode electrolyte interface (CEI) by solvent-in-salt electrolyte for Li-S batteries. Nano Research, 2023, 16(4): 5018-5025. https://doi.org/10.1007/s12274-023-5443-2
Topics:

3486

Views

2

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 18 October 2022
Revised: 16 December 2022
Accepted: 25 December 2022
Published: 19 February 2023
© Tsinghua University Press 2023
Return