AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Two-dimensional Cu-porphyrin nanosheet membranes for nanofiltration

Jiahao Cai1,§Shizheng Song1,§Lijie Zhu2( )Qipeng Lu3Zong Lu1Yanying Wei1( )Haihui Wang4( )
School of Chemistry & Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China

§ Jiahao Cai and Shizheng Song contributed equally to this work.

Show Author Information

Graphical Abstract

A kind of two-dimensional (2D) metal-organic framework (MOF) material, Cu-meso-tetrakis (4-carboxyphenyl) porphine (CuTCPP) nanosheets with wrinkled and flat morphologies are used as building blocks to assemble membranes by vacuum filtration (VF) and electrophoretic deposition (EPD) as energy-efficient nanofiltration (NF) membranes to remove dyes from water.

Abstract

A kind of two-dimensional (2D) metal-organic framework (MOF) material, Cu-meso-tetrakis (4-carboxyphenyl) porphine (Cu-TCPP) nanosheets with wrinkled and flat morphologies are used as building blocks to assemble membranes by vacuum filtration (VF) and electrophoretic deposition (EPD) as energy-efficient nanofiltration (NF) membranes to remove dyes from water. Since the nanosheets with wrinkled structure can provide additional water transport channels, thereby increasing the water permeance, in the premise of a high rejection (> 97.0%) for the dye brilliant blue G (BBG) (1.60 nm × 1.90 nm), the water permeance of the membrane assembled by the wrinkled nanosheets (~ 1170 nm) is about 4 times that of the membrane assembled by the flat nanosheets (~ 530 nm), reaching 16.39 L·m−2·h−1·bar−1. Additionally, the use of the relatively flat nanosheets and the membrane preparation method of electrophoretic deposition is more conducive to stack nanosheets orderly and reduce defects. Therefore, the water permeance of the membrane prepared by EPD (~ 1170 nm) with flat nanosheets is about twice that of the membrane prepared by VF (~ 530 nm), achieving 9.40 L·m−2·h−1·bar−1 with similar rejection (> 97.0%) of dye evans blue (EB) (3.10 nm × 1.20 nm). Furthermore, these membranes still exhibit good separation performance at high pressure of 0.6 MPa. Nanosheets with diverse structures and various membrane fabrication processes provide new directions for the separation performance optimization of 2D MOF materials for water purification.

Electronic Supplementary Material

Download File(s)
12274_2022_5447_MOESM1_ESM.pdf (1.1 MB)

References

[1]

Benkhaya, S.; M’rabet, S.; El Harfi, A. A review on classifications, recent synthesis and applications of textile dyes. Inorg. Chem. Commun. 2020, 115, 107891.

[2]

Rodriguez-Amaya, D. B. Natural food pigments and colorants. Curr. Opin. Food Sci. 2016, 7, 20–26.

[3]

Uddin, F. Environmental hazard in textile dyeing wastewater from local textile industry. Cellulose 2021, 28, 10715–10739.

[4]

Santos, P. G.; Scherer, C. M.; Fisch, A. G.; Rodrigues, M. A. S. Petrochemical wastewater treatment: Water recovery using membrane distillation. J. Cleaner Prod. 2020, 267, 121985.

[5]

Jamil, S.; Loganathan, P.; Khan, S. J.; McDonald, J. A.; Kandasamy, J.; Vigneswaran, S. Enhanced nanofiltration rejection of inorganic and organic compounds from a wastewater-reclamation plant’s micro-filtered water using adsorption pre-treatment. Sep. Purif. Technol. 2021, 260, 118207.

[6]

Chenab, K. K.; Sohrabi, B.; Jafari, A.; Ramakrishna, S. Water treatment: Functional nanomaterials and applications from adsorption to photodegradation. Mater. Today Chem. 2020, 16, 100262.

[7]

Meng, T. T.; Zhang, J. H.; Wang, H. C.; Fu, N.; Wang, M. P.; Li, W. S.; Shi, R. X.; Peng, B.; Li, P.; Deng, Z. W. Multifunctional CuO-coated mesh for wastewater treatment: Effective oil/water separation, organic contaminants photodegradation, and bacterial photodynamic inactivation. Adv. Mater. Interfaces 2021, 8, 2101179.

[8]

Zhang, Y.; Chung, T. S. Graphene oxide membranes for nanofiltration. Curr. Opin. Chem. Eng. 2017, 16, 9–15.

[9]

Zheng, K. Q.; Li, S. Q.; Chen, Z.; Chen, Y. Q.; Hong, Y. B.; Lan, W. G. Highly stable graphene oxide composite nanofiltration membrane. Nanoscale 2021, 13, 10061–10066.

[10]

Chen, X. Y.; Deng, E. D.; Lin, X. C.; Tandel, A. M.; Rub, D.; Zhu, L. X.; Huang, L.; Lin, H. Q. Engineering hierarchical nanochannels in graphene oxide membranes by etching and polydopamine intercalation for highly efficient dye recovery. Chem. Eng. J. 2022, 433, 133593.

[11]

Jia, F. C.; Xiao, X.; Nashalian, A.; Shen, S.; Yang, L.; Han, Z. Y.; Qu, H. J.; Wang, T. M.; Ye, Z.; Zhu, Z. J. et al. Advances in graphene oxide membranes for water treatment. Nano Res. 2022, 15, 6636–6654.

[12]

Fu, H. Q.; Wang, Z.; Li, P.; Qian, W.; Zhang, Z. X.; Zhao, X.; Feng, H.; Yang, Z. G.; Kou, Z. K.; He, D. P. Well-structured 3D channels within GO-based membranes enable ultrafast wastewater treatment. Nano Res. 2023, 16, 1826–1834.

[13]

Ding, L.; Wei, Y. Y.; Wang, Y. J.; Chen, H. B.; Caro, J.; Wang, H. H. A two-dimensional lamellar membrane: MXene nanosheet stacks. Angew. Chem., Int. Ed. 2017, 56, 1825–1829.

[14]

Shao, D. D.; Zhang, Q. X.; Wang, L.; Wang, Z. Y.; Jing, Y. X.; Cao, X. L.; Zhang, F.; Sun, S. P. Enhancing interfacial adhesion of MXene nanofiltration membranes via pillaring carbon nanotubes for pressure and solvent stable molecular sieving. J. Membr. Sci. 2021, 623, 119033.

[15]

Liu, L. F.; Zhou, Y. S.; Xue, J.; Wang, H. H. Enhanced antipressure ability through graphene oxide membrane by intercalating g-C3N4 nanosheets for water purification. AIChE J. 2019, 65, e16699.

[16]

Zhang, L. L.; Meng, G.; Fan, G. F.; Chen, K. L.; Wu, Y. L.; Liu, J. High flux photocatalytic self-cleaning nanosheet C3N4 membrane supported by cellulose nanofibers for dye wastewater purification. Nano Res. 2021, 14, 2568–2573.

[17]

Su, Y. Y.; Liu, D.; Yang, G. L.; Han, Q.; Qian, Y. J.; Liu, Y. C.; Wang, L. F.; Razal, J. M.; Lei, W. W. Transition metal dichalcogenide (TMD) membranes with ultrasmall nanosheets for ultrafast molecule separation. ACS Appl. Mater. Interfaces 2020, 12, 45453–45459.

[18]

Yang, S. S.; Zhang, K. S. Few-layers MoS2 nanosheets modified thin film composite nanofiltration membranes with improved separation performance. J. Membr. Sci. 2020, 595, 117526.

[19]

Peng, Y.; Yang, W. S. 2D metal-organic framework materials for membrane-based separation. Adv. Mater. Interfaces 2020, 7, 1901514.

[20]

Zhu, H. L.; Liu, D. X. The synthetic strategies of metal-organic framework membranes, films and 2D MOFs and their applications in devices. J. Mater. Chem. A 2019, 7, 21004–21035.

[21]

Dai, F. N.; Wang, X. K.; Zheng, S. H.; Sun, J. P.; Huang, Z. D.; Xu, B.; Fan, L. L.; Wang, R. M.; Sun, D. F.; Wu, Z. S. Toward high-performance and flexible all-solid-state micro-supercapacitors: MOF bulk vs. MOF nanosheets. Chem. Eng. J. 2021, 413, 127520.

[22]

Ang, H.; Hong, L. Polycationic polymer-regulated assembling of 2D MOF nanosheets for high-performance nanofiltration. ACS Appl. Mater. Interfaces 2017, 9, 28079–28088.

[23]

Jian, M. P.; Qiu, R. S.; Xia, Y.; Lu, J.; Chen, Y.; Gu, Q. F.; Liu, R. P.; Hu, C. Z.; Qu, J. H.; Wang, H. T. et al. Ultrathin water-stable metal-organic framework membranes for ion separation. Sci. Adv. 2020, 6, eaay3998.

[24]

Song, Y. F.; Sun, Y. W.; Du, D. Y.; Zhang, M.; Liu, Y.; Liu, L. L.; Ji, T. T.; He, G. H.; Liu, Y. Fabrication of c-oriented ultrathin TCPP-derived 2D MOF membrane for precise molecular sieving. J. Membr. Sci. 2021, 634, 119393.

[25]

Wang, Y.; Gao, H. X.; Wu, W. J.; Zhou, Z. F.; Yang, Z. W.; Wang, J. T.; Zou, Y. C. Nafion-threaded MOF laminar membrane with efficient and stable transfer channels towards highly enhanced proton conduction. Nano Res. 2022, 15, 3195–3203.

[26]

Kang, Y.; Qiu, R. S.; Jian, M. P.; Wang, P. Y.; Xia, Y.; Motevalli, B.; Zhao, W.; Tian, Z. M.; Liu, J. Z.; Wang, H. T. et al. The role of nanowrinkles in mass transport across graphene of na membranes. Adv. Funct. Mater. 2020, 30, 2003159.

[27]

Kim, H.; Kee, J.; Seo, D. R.; Lee, Y.; Ahn, C. W.; Koo, J. Large-area 2D-MXene nanosheet assemblies using langmuir-schaefer technique: Wrinkle formation. ACS Appl. Mater. Interfaces 2020, 12, 42294–42301.

[28]

Nam, Y. T.; Kim, S. J.; Kang, K. M.; Jung, W. B.; Kim, D. W.; Jung, H. T. Enhanced nanofiltration performance of graphene-based membranes on wrinkled polymer supports. Carbon 2019, 148, 370–377.

[29]

Zhang, P.; Jiang, L.; Liu, L. F.; Li, M. J.; Xie, G. Y.; Xu, X. L.; Jia, J. B.; Liu, C. Y.; Zhang, M. C. Stress driven micron- and nano-scale wrinkles as a new class of transport pathways of two-dimensional laminar membranes towards molecular separation. J. Membr. Sci. 2022, 648, 120354.

[30]

Jia, W.; Wu, B. H.; Sun, S. T.; Wu, P. Y. Interfacially stable MOF nanosheet membrane with tailored nanochannels for ultrafast and thermo-responsive nanofiltration. Nano Res. 2020, 13, 2973–2978.

[31]

Peng, Y.; Li, Y. S.; Ban, Y. J.; Yang, W. S. Two-dimensional metal-organic framework nanosheets for membrane-based gas separation. Angew. Chem., Int. Ed. 2017, 56, 9757–9761.

[32]

Lei, X. T.; Tay, S. W.; Ong, P. J.; Hong, L. Organic dye solution nanofiltration by 2D Zn-TCPP(Fe) membrane-leverage of chemical and fluid dynamic effects. J. Ind. Eng. Chem. 2019, 78, 410–420.

[33]

Ren, C. E.; Hatzell, K. B.; Alhabeb, M.; Ling, Z.; Mahmoud, K. A.; Gogotsi, Y. Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes. J. Phys. Chem. Lett. 2015, 6, 4026–4031.

[34]

Wang, M.; Duong, L. D.; Oh, J. S.; Mai, N. T.; Kim, S.; Hong, S.; Hwang, T.; Lee, Y.; Nam, J. D. Large-area, conductive and flexible reduced graphene oxide (RGO) membrane fabricated by electrophoretic deposition (EPD). ACS Appl. Mater. Interfaces 2014, 6, 1747–1753.

[35]

Deng, J. J.; Lu, Z.; Ding, L.; Li, Z. K.; Wei, Y. Y.; Caro, J.; Wang, H. H. Fast electrophoretic preparation of large-area two-dimensional titanium carbide membranes for ion sieving. Chem. Eng. J. 2021, 408, 127806.

[36]

Lee, D. T.; Jamir, J. D.; Peterson, G. W.; Parsons, G. N. Water-stable chemical-protective textiles via euhedral surface-oriented 2D Cu-TCPP metal-organic frameworks. Small 2019, 15, 1805133.

[37]

Cheng, P.; Huang, Y. D.; Wu, C.; Wang, X. P.; Fu, X. R.; Li, P.; Liu, Y. L.; Xia, S. J. Two-dimensional metal-porphyrin framework membranes for efficient molecular sieving. J. Membr. Sci. 2021, 640, 119812.

[38]

Zhao, M. T.; Wang, Y. X.; Ma, Q. L.; Huang, Y.; Zhang, X.; Ping, J. F.; Zhang, Z. C.; Lu, Q. P.; Yu, Y. F.; Xu, H. et al. Ultrathin 2D metal-organic framework nanosheets. Adv. Mater. 2015, 27, 7372–7378.

[39]

Hussain, S.; Wan, X. Y.; Li, Z. Y.; Peng, X. S. Cu-TCPP nanosheets blended polysulfone ultrafiltration membranes with enhanced antifouling and photo-tunable porosity. Sep. Purif. Technol. 2021, 268, 118688.

[40]

Zhao, Y. W.; Wang, J. N.; Pei, R. J. Micron-sized ultrathin metal-organic framework sheet. J. Am. Chem. Soc. 2020, 142, 10331–10336.

[41]

Sun, L. W.; Ying, Y. L.; Huang, H. B.; Song, Z. G.; Mao, Y. Y.; Xu, Z. P.; Peng, X. S. Ultrafast molecule separation through layered WS2 nanosheet membranes. ACS Nano 2014, 8, 6304–6311.

[42]

Xu, G.; Yamada, T.; Otsubo, K.; Sakaida, S.; Kitagawa, H. Facile “modular assembly” for fast construction of a highly oriented crystalline MOF nanofilm. J. Am. Chem. Soc. 2012, 134, 16524–16527.

[43]

Wang, Z.; Zhu, J. Y.; Xu, S. N.; Zhang, Y.; Van Der Bruggen, B. Graphene-like MOF nanosheets stabilize graphene oxide membranes enabling selective molecular sieving. J. Membr. Sci. 2021, 633, 119397.

Nano Research
Pages 6290-6297
Cite this article:
Cai J, Song S, Zhu L, et al. Two-dimensional Cu-porphyrin nanosheet membranes for nanofiltration. Nano Research, 2023, 16(5): 6290-6297. https://doi.org/10.1007/s12274-023-5447-y
Topics:

3605

Views

7

Crossref

7

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 31 October 2022
Revised: 13 December 2022
Accepted: 27 December 2022
Published: 12 April 2023
© Tsinghua University Press 2023
Return