Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Co-based catalysts are promising alternatives to precious metals for the selective and effective oxidation of 5-hydroxymethylfurfural (HMF) to the higher value-added 2,5-furandicarboxylic acid (FDCA). However, these catalysts still suffer from unsatisfactory activity and poor selectivity. A series of N-doped carbon-supported Co-based dual-metal nanoparticles (NPs) have been designed, among which the Co-Cu1.4-CNx exhibits enhanced HMF oxidative activity, achieving FDCA formation rates 4 times higher than that of pristine Co-CNx, with 100% FDCA selectivity. Density functional theory (DFT) calculations evidenced that the increased electron density on Co sites induced by Cu can mediate the positive electronegativity offset to downshift the d-band center of Co-Cu1.4-CNx, thus reducing the energy barriers for the conversion of HMF to FDCA. Such findings will support the development of superior non-precious metal catalysts for HMF oxidation.
Rajagopal, D.; Liu, B. The United States can generate up to 3.2 EJ of energy annually from waste. Nat. Energy 2020, 5, 18–19.
Tuck, C. O.; Pérez, E.; Horváth, I. T.; Sheldon, R. A.; Poliakoff, M. Valorization of biomass: Deriving more value from waste. Science 2012, 337, 695–699.
Mika, L. T.; Cséfalvay, E.; Németh, Á. Catalytic conversion of carbohydrates to initial platform chemicals: Chemistry and sustainability. Chem. Rev. 2018, 118, 505–613.
Van Putten, R. J.; Van Der Waal, J. C.; De Jong, E.; Rasrendra, C. B.; Heeres, H. J.; De Vries, J. G. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem. Rev. 2013, 113, 1499–1597.
Lu, X. Y.; Wu, K. H.; Zhang, B. S.; Chen, J. N.; Li, F.; Su, B. J.; Yan, P. Q.; Chen, J. M.; Qi, W. Highly efficient electro-reforming of 5-hydroxymethylfurfural on vertically oriented nickel nanosheet/carbon hybrid catalysts: Structure–function relationships. Angew. Chem., Int. Ed. 2021, 60, 14528–14535.
Ge, R. X.; Wang, Y.; Li, Z. Z.; Xu, M.; Xu, S. M.; Zhou, H.; Ji, K. Y.; Chen, F. G.; Zhou, J. H.; Duan, H. H. Selective electrooxidation of biomass-derived alcohols to aldehydes in a neutral medium: Promoted water dissociation over a nickel-oxide-supported ruthenium single-atom catalyst. Angew. Chem., Int. Ed. 2022, 61, e202200211.
Payne, K. A. P.; Marshall, S. A.; Fisher, K.; Cliff, M. J.; Cannas, D. M.; Yan, C. Y.; Heyes, D. J.; Parker, D. A.; Larrosa, I.; Leys, D. Enzymatic carboxylation of 2-furoic acid yields 2, 5-furandicarboxylic acid (FDCA). ACS Catal. 2019, 9, 2854–2865.
Liu, H.; Jia, W. L.; Yu, X.; Tang, X.; Zeng, X. H.; Sun, Y.; Lei, T. Z.; Fang, H. Y.; Li, T. Y.; Lin, L. Vitamin C-assisted synthesized Mn-Co oxides with improved oxygen vacancy concentration: Boosting lattice oxygen activity for the air-oxidation of 5-(hydroxymethyl)furfural. ACS Catal. 2021, 11, 7828–7844.
Liao, Y. T.; Van Chi, N.; Ishiguro, N.; Young, A. P.; Tsung, C. K.; Wu, K. C. W. Engineering a homogeneous alloy-oxide interface derived from metal-organic frameworks for selective oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid. Appl. Catal. B:Environ. 2020, 270, 118805.
Xu, S.; Zhou, P.; Zhang, Z. H.; Yang, C. J.; Zhang, B. G.; Deng, K. J.; Bottle, S.; Zhu, H. Y. Selective oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid using O2 and a photocatalyst of Co-thioporphyrazine bonded to g-C3N4. J. Am. Chem. Soc. 2017, 139, 14775–14782.
Liu, X.; Luo, Y.; Ma, H.; Zhang, S. J.; Che, P. H.; Zhang, M. Y.; Gao, J.; Xu, J. Hydrogen-binding-initiated activation of O–H bonds on a nitrogen-doped surface for the catalytic oxidation of biomass hydroxyl compounds. Angew. Chem., Int. Ed. 2021, 60, 18103–18110.
Yang, S. W.; Wu, C.; Wang, J. H.; Shen, H. D.; Zhu, K.; Zhang, X.; Cao, Y. L.; Zhang, Q. Y.; Zhang, H. P. Metal single-atom and nanoparticle double-active-site relay catalysts: Design, preparation, and application to the oxidation of 5-hydroxymethylfurfural. ACS Catal. 2022, 12, 971–981.
Hayashi, E.; Yamaguchi, Y.; Kamata, K.; Tsunoda, N.; Kumagai, Y.; Oba, F.; Hara, M. Effect of MnO2 crystal structure on aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid. J. Am. Chem. Soc. 2019, 141, 890–900.
Liao, X. M.; Hou, J. D.; Wang, Y.; Zhang, H.; Sun, Y.; Li, X. P.; Tang, S. Y.; Kato, K.; Yamauchi, M.; Jiang, Z. An active, selective, and stable manganese oxide-supported atomic Pd catalyst for aerobic oxidation of 5-hydroxymethylfurfural. Green Chem. 2019, 21, 4194–4203.
Han, X. W.; Geng, L.; Guo, Y.; Jia, R.; Liu, X. H.; Zhang, Y. G.; Wang, Y. Q. Base-free aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid over a Pt/C-O-Mg catalyst. Green Chem. 2016, 18, 1597–1604.
Mishra, D. K.; Lee, H. J.; Kim, J.; Lee, H. S.; Cho, J. K.; Suh, Y. W.; Yi, Y. J.; Kim, Y. J. MnCo2O4 spinel supported ruthenium catalyst for air-oxidation of HMF to FDCA under aqueous phase and base-free conditions. Green Chem. 2017, 19, 1619–1623.
Kim, M.; Su, Y. Q.; Fukuoka, A.; Hensen, E. J. M.; Nakajima, K. Aerobic oxidation of 5-(hydroxymethyl)furfural cyclic acetal enables selective furan-2, 5-dicarboxylic acid formation with CeO2-supported gold catalyst. Angew. Chem., Int. Ed. 2018, 57, 8235–8239.
Gao, T. Y.; Chen, J.; Fang, W. H.; Cao, Q.; Su, W. P.; Dumeignil, F. Ru/MnxCe1Oy catalysts with enhanced oxygen mobility and strong metal–support interaction: Exceptional performances in 5-hydroxymethylfurfural base-free aerobic oxidation. J. Catal. 2018, 368, 53–68.
Zhou, H.; Xu, H. H.; Liu, Y. Aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid over Co/Mn–lignin coordination complexes-derived catalysts. Appl. Catal. B:Environ. 2019, 244, 965–973.
Zhou, H.; Xu, H. H.; Wang, X. K.; Liu, Y. Convergent production of 2, 5-furandicarboxylic acid from biomass and CO2. Green Chem. 2019, 21, 2923–2927.
Rao, K. T. V.; Rogers, J. L.; Souzanchi, S.; Dessbesell, L.; Ray, M. B.; Xu, C. Inexpensive but highly efficient Co-Mn mixed-oxide catalysts for selective oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid. ChemSusChem 2018, 11, 3323–3334.
Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru-Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 134, e202205946.
Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.
Zuo, Y. P.; Rao, D. W.; Li, S.; Li, T. T.; Zhu, G. L.; Chen, S. M.; Song, L.; Chai, Y.; Han, H. Y. Atomic vacancies control of Pd-based catalysts for enhanced electrochemical performance. Adv. Mater. 2018, 30, 1704171.
Ji, Y. L.; Chen, Z.; Wei, R. L.; Yang, C.; Wang, Y. H.; Xu, J.; Zhang, H.; Guan, A. X.; Chen, J. T.; Sham, T. K. et al. Selective CO-to-acetate electroreduction via intermediate adsorption tuning on ordered Cu-Pd sites. Nat. Catal. 2022, 5, 251–258.
Jiang, J. C.; Chen, J. C.; Zhao, M. D.; Yu, Q.; Wang, Y. G.; Li, J. Rational design of copper-based single-atom alloy catalysts for electrochemical CO2 reduction. Nano Res. 2022, 15, 7116–7123.
Joo, S.; Kim, K.; Kwon, O.; Oh, J.; Kim, H. J.; Zhang, L. J.; Zhou, J.; Wang, J. Q.; Jeong, H. Y.; Han, J. W. et al. Enhancing thermocatalytic activities by upshifting the d-band center of exsolved Co-Ni-Fe ternary alloy nanoparticles for the dry reforming of methane. Angew. Chem., Int. Ed. 2021, 60, 15912–15919.
Lin, S. X.; Wang, Q.; Li, M. S.; Hao, Z. W.; Pan, Y. T.; Han, X. Y.; Chang, X.; Huang, S. Y.; Li, Z. H.; Ma, X. B. Ni-Zn dual sites switch the CO2 hydrogenation selectivity via tuning of the d-band center. ACS Catal. 2022, 12, 3346–3356.
Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature Zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.
Zhu, X. F.; Tan, X.; Wu, K. H.; Haw, S. C.; Pao, C. W.; Su, B. J.; Jiang, J. J.; Smith, S. C.; Chen, J. M.; Amal, R. et al. Intrinsic ORR activity enhancement of Pt atomic sites by engineering the d-band center via local coordination tuning. Angew. Chem., Int. Ed. 2021, 60, 21911–21917.
Wang, Y. H.; Xu, A. N.; Wang, Z. Y.; Huang, L. S.; Li, J.; Li, F. W.; Wicks, J.; Luo, M. C.; Nam, D. H.; Tan, C. S. et al. Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption. J. Am. Chem. Soc. 2020, 142, 5702–5708.
Wang, S. J.; Wang, H. Y.; Huang, C. Q.; Ye, P. C.; Luo, X. T.; Ning, J. Q.; Zhong, Y. J.; Hu, Y. Trifunctional electrocatalyst of N-doped graphitic carbon nanosheets encapsulated with CoFe alloy nanocrystals: The key roles of bimetal components and high-content graphitic-N. Appl. Catal. B:Environ. 2021, 298, 120512.
Nam, G.; Park, J.; Choi, M.; Oh, P.; Park, S.; Kim, M. G.; Park, N.; Cho, J.; Lee, J. S. Carbon-coated core–shell Fe-Cu nanoparticles as highly active and durable electrocatalysts for a Zn-air battery. ACS Nano 2015, 9, 6493–6501.
Donoeva, B.; Masoud, N.; De Jongh, P. E. Carbon support surface effects in the gold-catalyzed oxidation of 5-hydroxymethylfurfural. ACS Catal. 2017, 7, 4581–4591.
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, K. T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.
Zhu, G. H.; Yang, H. Y.; Jiang, Y.; Sun, Z. Q.; Li, X. P.; Yang, J. P.; Wang, H. F.; Zou, R. J.; Jiang, W.; Qiu, P. P. et al. Modulating the electronic structure of FeCo nanoparticles in N-doped mesoporous carbon for efficient oxygen reduction reaction. Adv. Sci. 2022, 9, 2200394.
Liu, H.; Ding, N.; Wei, J. N.; Tang, X.; Zeng, X. H.; Sun, Y.; Lei, T. Z.; Fang, H. Y.; Li, T. Y.; Lin, L. Oxidative esterification of 5-hydroxymethylfurfural with an N-doped carbon-supported CoCu bimetallic catalyst. ChemSusChem 2020, 13, 4151–4158.
Zuo, Y. P.; Rao, D. W.; Zhang, N.; Li, T. T.; Jing, T. Y.; Kment, Š.; Sofer, Z.; Chai, Y. Self-reconstruction mediates isolated Pt tailored nanoframes for highly efficient catalysis. J. Mater. Chem. A 2021, 9, 22501–22508.
Zhang, Q. R.; Kumar, P.; Zhu, X. F.; Daiyan, R.; Bedford, N. M.; Wu, K. H.; Han, Z. J.; Zhang, T. R.; Amal, R.; Lu, X. Y. Electronically modified atomic sites within a multicomponent Co/Cu composite for efficient oxygen electroreduction. Adv. Energy Mater. 2021, 11, 2100303.
Yuan, S.; Zhang, J. W.; Hu, L. Y.; Li, J. N.; Li, S. W.; Gao, Y. N.; Zhang, Q. H.; Gu, L.; Yang, W. X.; Feng, X. et al. Decarboxylation-induced defects in MOF-derived single cobalt atom@carbon electrocatalysts for efficient oxygen reduction. Angew. Chem., Int. Ed. 2021, 60, 21685–21690.
Yin, S. H.; Yang, J.; Han, Y.; Li, G.; Wan, L. Y.; Chen, Y. H.; Chen, C.; Qu, X. M.; Jiang, Y. X.; Sun, S. G. Construction of highly active metal-containing nanoparticles and FeCo-N4 composite sites for the acidic oxygen reduction reaction. Angew. Chem., Int. Ed. 2020, 59, 21976–21979.
Zuo, Y. P.; Li, T. T.; Zhang, N.; Jing, T. Y.; Rao, D. W.; Schmuki, P.; Kment, Š.; Zbořil, R.; Chai, Y. Spatially confined formation of single atoms in highly porous carbon nitride nanoreactors. ACS Nano 2021, 15, 7790–7798.
Davis, S. E.; Zope, B. N.; Davis, R. J. On the mechanism of selective oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid over supported Pt and Au catalysts. Green Chem. 2012, 14, 143–147.
Zope, B. N.; Hibbitts, D. D.; Neurock, M.; Davis, R. J. Reactivity of the gold/water interface during selective oxidation catalysis. Science 2010, 330, 74–78.
Ryu, J.; Bregante, D. T.; Howland, W. C.; Bisbey, R. P.; Kaminsky, C. J.; Surendranath, Y. Thermochemical aerobic oxidation catalysis in water can be analysed as two coupled electrochemical half-reactions. Nat. Catal. 2021, 4, 742–752.