Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Halide perovskite light emitting diodes (LEDs) have gained great progress in recent years. However, mixed-halide perovskites for blue LEDs usually suffer from electroluminescence (EL) spectra shift at a high applied voltage or current density, limiting their efficiency. In this work, we report a strategy of using single-layer perovskite quantum dots (QDs) film to tackle the electroluminescence spectra shift in pure-blue perovskite LEDs and improve the LED efficiency by co-doping copper and potassium in the mixed-halide perovskite QDs. As a result, we obtained pure-blue halide perovskite QD-LEDs with stable EL spectra centred at 469 nm even at a current density of 1,617 mA·cm−2. The optimal device presents a maximum external quantum efficiency (EQE) of 2.0%. The average maximum EQE and luminance of the LEDs are 1.49% and 393 cd·m−2, increasing 62% and 66% compared with the control LEDs. Our study provides an effective strategy for achieving spectra-stable and highly efficient pure-blue perovskite LEDs.
Xu, W. D.; Hu, Q.; Bai, S.; Bao, C. X.; Miao, Y. F.; Yuan, Z. C.; Borzda, T.; Barker, A. J.; Tyukalova, E.; Hu, Z. J. et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photonics 2019, 13, 418–424.
Chiba, T.; Hayashi, Y.; Ebe, H.; Hoshi, K.; Sato, J.; Sato, S.; Pu, Y. J.; Ohisa, S.; Kido, J. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photonics 2018, 12, 681–687.
Xie, M. Y.; Guo, J.; Zhang, X. Y.; Bi, C. H.; Zhang, L.; Chu, Z. M.; Zheng, W. T.; You, J. B.; Tian, J. J. High-efficiency pure-red perovskite quantum-dot light-emitting diodes. Nano Lett. 2022, 22, 8266–8273.
Lin, K. B.; Xing, J.; Quan, L. N.; de Arquer, F. P. G.; Gong, X. W.; Lu, J. X.; Xie, L. Q.; Zhao, W. J.; Zhang, D.; Yan, C. Z. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 2018, 562, 245–248.
Fang, T.; Wang, T. T.; Li, X. S.; Dong, Y. H.; Bai, S.; Song, J. Z. Perovskite QLED with an external quantum efficiency of over 21% by modulating electronic transport. Sci. Bull. 2021, 66, 36–43.
Fakharuddin, A.; Gangishetty, M. K.; Abdi-Jalebi, M.; Chin, S. H.; bin Mohd Yusoff, A. R.; Congreve, D. N.; Tress, W.; Deschler, F.; Vasilopoulou, M.; Bolink, H. J. Perovskite light-emitting diodes. Nat. Electron. 2022, 5, 203–216.
Pang, P. Y.; Xing, Z. H.; Xia, J. M.; Wang, B. Z.; Zhang, Z. P.; Guo, J.; Liu, T. H.; He, B. C.; Chen, J. S.; Chen, S. et al. Deep-blue light-emitting diodes constructed with perovskite quasi-2D and nanocrystal mixtures. Adv. Opt. Mater. 2022, 10, 2201112.
Karlsson, M.; Yi, Z. Y.; Reichert, S.; Luo, X. Y.; Lin, W. H.; Zhang, Z. Y.; Bao, C. X.; Zhang, R.; Bai, S.; Zheng, G. H. J. et al. Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes. Nat. Commun. 2021, 12, 361.
Bi, C. H.; Yao, Z. W.; Sun, X. J.; Wei, X. C.; Wang, J. X.; Tian, J. J. Perovskite quantum dots with ultralow trap density by acid etching-driven ligand exchange for high luminance and stable pure-blue light-emitting diodes. Adv. Mater 2021, 33, 2006722.
Liu, A. Q.; Bi, C. H.; Tian, J. J. All solution-processed high performance pure-blue perovskite quantum-dot light-emitting diodes. Adv. Funct. Mater. 2022, 32, 2207069.
Akkerman, Q. A.; Rainò, G.; Kovalenko, M. V.; Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 2018, 17, 394–405.
Li, G. R.; Rivarola, F. W. R.; Davis, N. J. L. K.; Bai, S.; Jellicoe, T. C.; de la Peña, F.; Hou, S. C.; Ducati, C.; Gao, F.; Friend, R. H. et al. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method. Adv. Mater. 2016, 28, 3528–3534.
Zheng, X. P.; Yuan, S.; Liu, J. K.; Yin, J.; Yuan, F. L.; Shen, W. S.; Yao, K. X.; Wei, M. Y.; Zhou, C.; Song, K. P. et al. Chlorine vacancy passivation in mixed halide perovskite quantum dots by organic pseudohalides enables efficient rec. 2020 blue light-emitting diodes. ACS Energy Lett. 2020, 5, 793–798.
Zhang, B. B.; Yuan, S.; Ma, J. P.; Zhou, Y.; Hou, J. S.; Chen, X. Y.; Zheng, W.; Shen, H. B.; Wang, X. C.; Sun, B. Q. et al. General mild reaction creates highly luminescent organic-ligand-lacking halide perovskite nanocrystals for efficient light-emitting diodes. J. Am. Chem. Soc. 2019, 141, 15423–15432.
Ochsenbein, S. T.; Krieg, F.; Shynkarenko, Y.; Rainò, G.; Kovalenko, M. V. Engineering color-stable blue light-emitting diodes with lead halide perovskite nanocrystals. ACS Appl. Mater. Interfaces 2019, 11, 21655–21660.
Shynkarenko, Y.; Bodnarchuk, M. I.; Bernasconi, C.; Berezovska, Y.; Verteletskyi, V.; Ochsenbein, S. T.; Kovalenko, M. V. Direct synthesis of quaternary alkylammonium-capped perovskite nanocrystals for efficient blue and green light-emitting diodes. ACS Energy Lett. 2019, 4, 2703–2711.
Ye, F. H.; Zhang, H. J.; Wang, P.; Cai, J. L.; Wang, L.; Liu, D.; Wang, T. Spectral tuning of efficient CsPbBrxCl3–x blue light-emitting diodes via halogen exchange triggered by benzenesulfonates. Chem. Mater. 2020, 32, 3211–3218.
Shin, Y. S.; Yoon, Y. J.; Lee, K. T.; Jeong, J.; Park, S. Y.; Kim, G. H.; Kim, J. Y. Vivid and fully saturated blue light-emitting diodes based on ligand-modified halide perovskite nanocrystals. ACS Appl. Mater. Interfaces 2019, 11, 23401–23409.
Shao, H.; Zhai, Y.; Wu, X. F.; Xu, W.; Xu, L.; Dong, B.; Bai, X.; Cui, H. N.; Song, H. W. High brightness blue light-emitting diodes based on CsPb(Cl/Br)3 perovskite QDs with phenethylammonium chloride passivation. Nanoscale 2020, 12, 11728–11734.
Kim, J. S.; Heo, J. M.; Park, G. S.; Woo, S. J.; Cho, C.; Yun, H. J.; Kim, D.H.; Park, J.; Lee, S.C.; Park, S.H.; et al. Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 2022, 611, 688–694.
Park, C. B.; Shin, Y. S.; Yoon, Y. J.; Jang, H.; Son, J. G.; Kim, S.; An, N. G.; Kim, J. W.; Jun, Y. C.; Kim, G. H. et al. Suppression of halide migration and immobile ionic surface passivation for blue perovskite light-emitting diodes. J. Mater. Chem. C 2022, 10, 2060–2066.
Zhang, F.; Zhang, X.; Wang, C. H.; Sun, M. N.; Luo, X. Y.; Yang, Y. G.; Chang, S.; Zhang, D. D.; Duan, L. Chlorine distribution management for spectrally stable and efficient perovskite blue light-emitting diodes. Nano Energy 2021, 79, 105486.
Hou, S. C.; Gangishetty, M. K.; Quan, Q. M.; Congreve, D. N. Efficient blue and white perovskite light-emitting diodes via manganese doping. Joule 2018, 2, 2421–2433.
Pan, J. Y.; Zhao, Z. H.; Fang, F.; Wang, L. X.; Wang, G. Z.; Liu, C. J.; Chen, J.; Xie, J.; Sun, J. Y.; Wang, K. et al. Multiple cations enhanced defect passivation of blue perovskite quantum dots enabling efficient light-emitting diodes. Adv. Opt. Mater. 2020, 8, 2001494.
Pan, J. Y.; Zhao, Z. H.; Fang, F.; Wang, L. X.; Wang, G. Z.; Liu, C. J.; Huang, Q. Q.; Sun, J. Y.; Huang, Y. L.; Mao, L. et al. A synergetic codoping strategy enabling performance improvement of pure-blue perovskite quantum dots light-emitting diodes. Adv. Opt. Mater. 2022, 10, 2102569.
Pan, G. C.; Bai, X.; Xu, W.; Chen, X.; Zhai, Y.; Zhu, J. Y.; Shao, H.; Ding, N.; Xu, L.; Dong, B. et al. Bright blue light emission of Ni2+ ion-doped CsPbClxBr3–x perovskite quantum dots enabling efficient light-emitting devices. ACS Appl. Mater. Interfaces 2020, 12, 14195–14202.
Meng, F. Y.; Liu, X. Y.; Cai, X. Y.; Gong, Z. F.; Li, B. B.; Xie, W. T.; Li, M. K.; Chen, D. C.; Yip, H. L.; Su, S. J. Incorporation of rubidium cations into blue perovskite quantum dot light-emitting diodes via FABr-modified multi-cation hot-injection method. Nanoscale 2019, 11, 1295–1303.
Todorović, P.; Ma, D. X.; Chen, B.; Quintero-Bermudez, R.; Saidaminov, M. I.; Dong, Y. T.; Lu, Z. H.; Sargent, E. H. Spectrally tunable and stable electroluminescence enabled by rubidium doping of CsPbBr3 nanocrystals. Adv. Opt. Mater. 2019, 7, 1901440.
Bi, C. H.; Wang, S. X.; Li, Q.; Kershaw, S. V.; Tian, J. J.; Rogach, A. L. Thermally stable copper(II)-doped cesium lead halide perovskite quantum dots with strong blue emission. J. Phys. Chem. Lett. 2019, 10, 943–952.
Gao, Y.; Luo, C.; Yan, C.; Li, W.; Liu, C. Q.; Yang, W. Q. Copper-doping defect-lowered perovskite nanosheets for deep-blue light-emitting diodes. J. Colloid Interface Sci. 2022, 607, 1796–1804.
Chen, F.; Xu, L. M.; Li, Y.; Fang, T.; Wang, T. T.; Salerno, M.; Prato, M.; Song, J. Z. Highly efficient sky-blue light-emitting diodes based on Cu-treated halide perovskite nanocrystals. J. Mater. Chem. C 2020, 8, 13445–13452.
Abdi-Jalebi, M.; Andaji-Garmaroudi, Z.; Cacovich, S.; Stavrakas, C.; Philippe, B.; Richter, J. M.; Alsari, M.; Booker, E. P.; Hutter, E. M.; Pearson, A. J. et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 2018, 555, 497–501.
Yang, F.; Chen, H. T.; Zhang, R.; Liu, X. K.; Zhang, W. Z.; Zhang, J. B.; Gao, F.; Wang, L. Efficient and spectrally stable blue perovskite light-emitting diodes based on potassium passivated nanocrystals. Adv. Funct. Mater. 2020, 30, 1908760.
Tsai, H.; Huang, H. H.; Watt, J.; Hou, C. H.; Strzalka, J.; Shyue, J. J.; Wang, L.; Nie, W. Y. Cesium lead halide perovskite nanocrystals assembled in metal-organic frameworks for stable blue light emitting diodes. Adv. Sci. 2022, 9, 2105850.
Song, J. Z.; Fang, T.; Li, J. H.; Xu, L. M.; Zhang, F. J.; Han, B. N.; Shan, Q. S.; Zeng, H. B. Organic-inorganic hybrid passivation enables perovskite QLEDs with an EQE of 16.48%. Adv. Mater. 2018, 30, 1805409.
Song, J. Z.; Li, J. H.; Xu, L. M.; Li, J. H.; Zhang, F. J.; Han, B. N.; Shan, Q. S.; Zeng, H. B. Room-temperature triple-ligand surface engineering synergistically boosts ink stability, recombination dynamics, and charge injection toward EQE-11.6% perovskite QLEDs. Adv. Mater. 2018, 30, 1800764.
Ghebouli, M. A.; Ghebouli, B.; Fatmi, M. First-principles calculations on structural, elastic, electronic, optical and thermal properties of CsPbCl3 perovskite. Phys. B Condens. Matter 2011, 406, 1837–1843.
Kuznetsova, I. Y.; Kovaleva, I. S.; Fedorov, V. A. Interaction of lead bromide with cesium and cadmium bromides. Russ. J. Inorg. Chem. 2001, 46, 1730–1735.
Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.
Dong, Q. F.; Fang, Y. J.; Shao, Y. C.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. S. Electron–hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 2015, 347, 967–970.
Wright, A. D.; Verdi, C.; Milot, R. L.; Eperon, G. E.; Pérez-Osorio, M. A.; Snaith, H. J.; Giustino, F.; Johnston, M. B.; Herz, L. M. Electron–phonon coupling in hybrid lead halide perovskites. Nat. Commun. 2016, 7, 11755.
Zhang, S.; Liu, H.; Li, X.; Wang, S. Enhancing quantum yield of CsPb(BrxCl1−x)3 nanocrystals through lanthanum doping for efficient blue light-emitting diodes. Nano Energy 2020, 77, 105302.
Yuan, S.; Zheng, X. P.; Shen, W. S.; Liu, J. K.; Cui, L. S.; Zhang, C. C.; Tian, Q. S.; Wu, J. J.; Zhou, Y. H.; Wang, X. D. et al. Overcoming degradation pathways to achieve stable blue perovskite light-emitting diodes. ACS Energy Lett. 2022, 7, 1348–1354.
Cadelano, M.; Sarritzu, V.; Sestu, N.; Marongiu, D.; Chen, F. P.; Piras, R.; Corpino, R.; Carbonaro, C. M.; Quochi, F.; Saba, M. et al. Can trihalide lead perovskites support continuous wave lasing. Adv. Opt. Mater. 2015, 3, 1557–1564.
Jang, H. M.; Park, J.; Kim, S.; Lee, T. W. Quantum-confinement effect on the linewidth broadening of metal halide perovskite-based quantum dots. J. Phys. Condens. Matter 2021, 33, 355702.