AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Temperature-controlled multisensory neuromorphic devices for artificial visual dynamic capture enhancement

Gengxu Chen1,2,§( )Xipeng Yu1,2,§Changsong Gao1,2Yan Dai1,2Yanxue Hao1,2Rengjian Yu1,2Huipeng Chen1,2 ( )Tailiang Guo1,2
National & Local United Engineering Laboratory of Flat Panel Display Technology, Institute of Optoelectronic Display, College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350100, China

§ Gengxu Chen and Xipeng Yu contributed equally to this work.

Show Author Information

Graphical Abstract

We propose a temperature-dependent memory/synaptic hybrid artificial neuromorphic device based on floating gate phototransistors for simulating sensor-memory behavior in organisms at different temperatures.

Abstract

Multi-sensory neuromorphic devices (MND) have broad potential in overcoming the structural bottleneck of von Neumann in the era of big data. However, the current multisensory artificial neuromorphic system is mainly based on unitary nonvolatile memory or volatile synaptic devices without intrinsic thermal sensitivity, which limits the range of biological multisensory perception and the flexibility and computational efficiency of the neural morphological computing system. Here, a temperature-dependent memory/synaptic hybrid artificial neuromorphic device based on floating gate phototransistors (FGT) is fabricated. The CsPbBr3/TiO2 core–shell nanocrystals (NCs) prepared by in-situ pre-protection low-temperature solvothermal method were used as the photosensitive layer. The device exhibits remarkable multi-level visual memory with a large memory window of 59.6 V at room temperature. Surprisingly, when the temperature varies from 20 to 120 °C back and forth, the device can switch between nonvolatile memory and volatile synaptic device with reconfigurable and reversible behaviors, which contributes to the efficient visual/thermal fusion perception. This work expands the sensory range of multisensory devices and promotes the development of memory and neuromorphic devices based on organic field-effect transistors (OFET).

Electronic Supplementary Material

Download File(s)
12274_2023_5456_MOESM1_ESM.pdf (1.7 MB)

References

[1]

Yang, J. J.; Pickett, M. D.; Li, X. M.; Ohlberg, D. A. A.; Stewart, D. R.; Williams, R. S. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 2008, 3, 429–433.

[2]

Kuzum, D.; Yu, S. M.; Wong, H. S. P. Synaptic electronics: Materials, devices and applications. Nanotechnology 2013, 24, 382001.

[3]

von Neumann, J. The principles of large-scale computing machines. Ann. Hist. Comput. 1981, 3, 263–273.

[4]

Zidan, M. A.; Strachan, J. P.; Lu, W. D. The future of electronics based on memristive systems. Nat. Electron. 2018, 1, 22–29.

[5]

Jeong, D. S.; Hwang, C. S. Nonvolatile memory materials for neuromorphic intelligent machines. Adv. Mater. 2018, 30, 1704729.

[6]

Hu, D. B.; Wang, X. M.; Chen, H. P.; Guo, T. L. High performance flexible nonvolatile memory based on vertical organic thin film transistor. Adv. Funct. Mater. 2017, 27, 1703541.

[7]

van de Burgt, Y.; Lubberman, E.; Fuller, E. J.; Keene, S. T.; Faria, G. C.; Agarwal, S.; Marinella, M. J.; Talin, A. A.; Salleo, A. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 2017, 16, 414–418.

[8]

Wang, S. Y.; Chen, C. S.; Yu, Z. H.; He, Y. L.; Chen, X. Y.; Wan, Q.; Shi, Y.; Zhang, D. W.; Zhou, H.; Wang, X. R. et al. A MoS2/PTCDA hybrid heterojunction synapse with efficient photoelectric dual modulation and versatility. Adv. Mater. 2019, 31, 1806227.

[9]

Smith, C. L. The temperature dependence of oxidative phosphorylation and of the activity of various enzyme systems in liver mitochondria from cold- and warm-blooded animals. Comp. Biochem. Phys. Part B 1973, 46, 445–461.

[10]

More, N.; Daniel, R. M.; Petach, H. H. The effect of low temperatures on enzyme activity. Biochem. J. 1995, 305, 17–20.

[11]

Li, X. N.; Zhou, W.; Yao, S.; Luo, Q. M. Effects of temperature on the activity of cultured hippocampal neuronal networks. Acta Biophys. Sin. 2004, 20, 477–482.

[12]

Karlsson, K. Æ.; Blumberg, M. S. Temperature-induced reciprocal activation of hippocampal field activity. J. Neurophysiol. 2004, 91, 583–588.

[13]

Wise, R. A. Dopamine, learning and motivation. Nat. Rev. Neurosci. 2004, 5, 483–494.

[14]

Hao, J. Z.; Bonnet, C.; Amsalem, M.; Ruel, J.; Delmas, P. Transduction and encoding sensory information by skin mechanoreceptors. Pflugers Arch. Eur. J. Physiol. 2015, 467, 109–119.

[15]

Cao, Y.; Sarria, I.; Fehlhaber, K. E.; Kamasawa, N.; Orlandi, C.; James, K. N.; Hazen, J. L.; Gardner, M. R.; Farzan, M.; Lee, A. et al. Mechanism for selective synaptic wiring of rod photoreceptors into the retinal circuitry and its role in vision. Neuron 2015, 87, 1248–1260.

[16]

Kumar, M.; Park, J. Y.; Seo, H. An artificial mechano-nociceptor with Mott transition. Small Methods 2021, 5, 2100566.

[17]

He, W. X.; Fang, Y.; Yang, H. H.; Wu, X. M.; He, L. H.; Chen, H. P.; Guo, T. L. A multi-input light-stimulated synaptic transistor for complex neuromorphic computing. J. Mater. Chem. C 2019, 7, 12523–12531.

[18]

Wan, H. C.; Zhao, J. Y.; Lo, L. W.; Cao, Y. Q.; Sepúlveda, N.; Wang, C. Multimodal artificial neurological sensory-memory system based on flexible carbon nanotube synaptic transistor. ACS Nano 2021, 15, 14587–14597.

[19]

Liu, L.; Xu, W. L.; Ni, Y.; Xu, Z. P.; Cui, B. B.; Liu, J. Q.; Wei, H. H.; Xu, W. T. Stretchable neuromorphic transistor that combines multisensing and information processing for epidermal gesture recognition. ACS Nano 2022, 16, 2282–2291.

[20]

Osborn, L.; Kaliki, R. R.; Soares, A. B.; Thakor, N. V. Neuromimetic event-based detection for closed-loop tactile feedback control of upper limb prostheses. IEEE Trans. Hapt. 2016, 9, 196–206.

[21]

Hu, W. Q.; Lum, G. Z.; Mastrangeli, M.; Sitti, M. Small-scale soft-bodied robot with multimodal locomotion. Nature 2018, 554, 81–85.

[22]

Wehner, M.; Truby, R. L.; Fitzgerald, D. J.; Mosadegh, B.; Whitesides, G. M.; Lewis, J. A.; Wood, R. J. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 2016, 536, 451–455.

[23]

Wu, X. M.; Li, E. L.; Liu, Y. Q.; Lin, W. K.; Yu, R. J.; Chen, G. X.; Hu, Y. Y.; Chen, H. P.; Guo, T. L. Artificial multisensory integration nervous system with haptic and iconic perception behaviors. Nano Energy 2021, 85, 106000.

[24]

Wan, C. J.; Cai, P. Q.; Guo, X. T.; Wang, M.; Matsuhisa, N.; Yang, L.; Lv, Z. S.; Luo, Y. F.; Loh, X. J.; Chen, X. D. An artificial sensory neuron with visual-haptic fusion. Nat. Commun. 2020, 11, 4602.

[25]

Tan, H. W.; Tao, Q. Z.; Pande, I.; Majumdar, S.; Liu, F.; Zhou, Y. F.; Persson, P. O. Å.; Rosen, J.; Van Dijken, S. Tactile sensory coding and learning with bio-inspired optoelectronic spiking afferent nerves. Nat. Commun. 2020, 11, 1369.

[26]

Lin, W. K.; Chen, G. X.; Li, E. L.; He, L. H.; Yu, W. J.; Peng, G.; Chen, H. P.; Guo, T. L. Nonvolatile multilevel photomemory based on lead-free double perovskite Cs2AgBiBr6 nanocrystals wrapped within SiO2 as a charge trapping layer. ACS Appl. Mater. Interfaces 2020, 12, 43967–43975.

[27]

Ji, Y. Q.; Wang, M. Q.; Yang, Z.; Qiu, H. W.; Padhiar, M. A.; Zhou, Y.; Wang, H.; Dang, J. L.; Gaponenko, N. V.; Bhatti, A. S. Trioctylphosphine-assisted pre-protection low-temperature solvothermal synthesis of highly stable CsPbBr3/TiO2 nanocomposites. J. Phys. Chem. Lett. 2021, 12, 3786–3794.

[28]

Xia, Y. N.; Xia, X. H.; Peng, H. C. Shape-controlled synthesis of colloidal metal nanocrystals: Thermodynamic versus kinetic products. J. Am. Chem. Soc. 2015, 137, 7947–7966.

[29]

Xiao, F. X. Construction of highly ordered ZnO-TiO2 nanotube arrays (ZnO/TNTs) heterostructure for photocatalytic application. ACS Appl. Mater. Interfaces 2012, 4, 7055–7063.

[30]

Guo, W. L.; Lin, Z. M.; Wang, X. K.; Song, G. Z. Sonochemical synthesis of nanocrystalline TiO2 by hydrolysis of titanium alkoxides. Microelectron. Eng. 2003, 66, 95–101.

[31]

Su, L. S.; Tong, P.; Zhang, L. J.; Luo, Z. B.; Fu, C. L.; Tang, D. P.; Zhang, Y. Y. Photoelectrochemical immunoassay of aflatoxin B1 in foodstuff based on amorphous TiO2 and CsPbBr3 perovskite nanocrystals. Analyst 2019, 144, 4880–4886.

[32]

Li, Z. J.; Hofman, E.; Li, J.; Davis, A. H.; Tung, C. H.; Wu, L. Z.; Zheng, W. W. Photoelectrochemically active and environmentally stable CsPbBr3/TiO2 core/shell nanocrystals. Adv. Funct. Mater. 2018, 28, 1704288.

[33]

Yang, J. P.; Wang, Y. X.; Li, W.; Wang, L. J.; Fan, Y. C.; Jiang, W.; Luo, W.; Wang, Y.; Kong, B.; Selomulya, C. et al. Amorphous TiO2 shells: A vital elastic buffering layer on silicon nanoparticles for high-performance and safe lithium storage. Adv. Mater. 2017, 29, 1700523.

[34]

Ravi, V. K.; Saikia, S.; Yadav, S.; Nawale, V. V.; Nag, A. CsPbBr3/ZnS core/shell type nanocrystals for enhancing luminescence lifetime and water stability. ACS Energy Lett. 2020, 5, 1794–1796.

[35]

Lee, S.; Lee, K.; Kim, W. D.; Lee, S.; Shin, D. J.; Lee, D. C. Thin amorphous TiO2 shell on CdSe nanocrystal quantum dots enhances photocatalysis of hydrogen evolution from water. J. Phys. Chem. C 2014, 118, 23627–23634.

[36]

Parobek, D.; Dong, Y. T.; Qiao, T.; Rossi, D.; Son, D. H. Photoinduced anion exchange in cesium lead halide perovskite nanocrystals. J. Am. Chem. Soc. 2017, 139, 4358–4361.

[37]

Yang, F. X.; Sun, L. J.; Duan, Q. X.; Dong, H. L.; Jing, Z. K.; Yang, Y. C.; Li, R. J.; Zhang, X. T.; Hu, W. P.; Chua, L. Vertical-organic-nanocrystal-arrays for crossbar memristors with tuning switching dynamics toward neuromorphic computing. SmartMat 2021, 2, 99–108.

[38]

Gao, J.; Zheng, Y.; Yu, W.; Wang, Y. N.; Jin, T. Y.; Pan, X.; Loh, K. P.; Chen, W. Intrinsic polarization coupling in 2D α-In2Se3 toward artificial synapse with multimode operations. SmartMat 2021, 2, 88–98.

[39]

Zhu, L. Q.; Wan, C. J.; Guo, L. Q.; Shi, Y.; Wan, Q. Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat. Commun. 2014, 5, 3158.

[40]

Yang, Q.; Huang, J. S.; Chen, Q. Z.; Chen, C. H.; Chen, H. P.; Guo, T. L. Synaptic transistor with tunable synaptic behavior based on a thermo-denatured polar polymer material. J. Mater. Chem. C 2022, 10, 5534–5541.

[41]

Wang, X. M.; Yan, Y. J.; Li, E. L.; Liu, Y. Q.; Lai, D. X.; Lin, Z. X.; Liu, Y.; Chen, H. P.; Guo, T. L. Stretchable synaptic transistors with tunable synaptic behavior. Nano Energy 2020, 75, 104952.

[42]

Yu, R. J.; Li, E. L.; Wu, X. M.; Yan, Y. J.; He, W. X.; He, L. H.; Chen, J. W.; Chen, H. P.; Guo, T. L. Electret-based organic synaptic transistor for neuromorphic computing. ACS Appl. Mater. Interfaces 2020, 12, 15446–15455.

[43]

Li, E. L.; He, W. X.; Yu, R. J.; He, L. H.; Wu, X. M.; Chen, Q. Z.; Liu, Y.; Chen, H. P.; Guo, T. L. High-density reconfigurable synaptic transistors targeting a minimalist neural network. ACS Appl. Mater. Interfaces 2021, 13, 28564–28573.

[44]

Ham, S.; Choi, S.; Cho, H.; Na, S. I.; Wang, G. Photonic organolead halide perovskite artificial synapse capable of accelerated learning at low power inspired by dopamine-facilitated synaptic activity. Adv. Funct. Mater. 2019, 29, 1806646.

[45]

Li, E. L.; Lin, W. K.; Yan, Y. J.; Yang, H. H.; Wang, X. M.; Chen, Q. Z.; Lv, D. X.; Chen, G. X.; Chen, H. P.; Guo, T. L. Synaptic transistor capable of accelerated learning induced by temperature-facilitated modulation of synaptic plasticity. ACS Appl. Mater. Interfaces 2019, 11, 46008–46016.

[46]

Horowitz, G.; Hajlaoui, M. E.; Hajlaoui, R. Temperature and gate voltage dependence of hole mobility in polycrystalline oligothiophene thin film transistors. J. Appl. Phys. 2000, 87, 4456–4463.

[47]

Sakanoue, T.; Sirringhaus, H. Band-like temperature dependence of mobility in a solution-processed organic semiconductor. Nat. Mater. 2010, 9, 736–740.

[48]

Flynn, J. H.; Wall, L. A. A quick, direct method for the determination of activation energy from thermogravimetric data. J. Polym. Sci. Part B: Polym. Lett. 1966, 4, 323–328.

[49]

Fu, Y.; Kong, L. A.; Chen, Y.; Wang, J. X.; Qian, C.; Yuan, Y. B.; Sun, J.; Gao, Y. L.; Wan, Q. Flexible neuromorphic architectures based on self-supported multiterminal organic transistors. ACS Appl. Mater. Interfaces 2018, 10, 26443–26450.

[50]

Wang, H. L.; Zhao, Q.; Ni, Z. J.; Li, Q. Y.; Liu, H. T.; Yang, Y. C.; Wang, L. F.; Ran, Y.; Guo, Y. L.; Hu, W. P. et al. A ferroelectric/electrochemical modulated organic synapse for ultraflexible, artificial visual-perception system. Adv. Mater. 2018, 30, 1803961.

Nano Research
Pages 7661-7670
Cite this article:
Chen G, Yu X, Gao C, et al. Temperature-controlled multisensory neuromorphic devices for artificial visual dynamic capture enhancement. Nano Research, 2023, 16(5): 7661-7670. https://doi.org/10.1007/s12274-023-5456-x
Topics:

3679

Views

10

Crossref

12

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 22 November 2022
Revised: 16 December 2022
Accepted: 26 December 2022
Published: 22 February 2023
© Tsinghua University Press 2023
Return