AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Super-elastic and mechanically durable MXene-based nanocomposite aerogels enabled by interfacial engineering with dual crosslinking strategy

Yan Sun1,2Xin Yang3Ruonan Ding4Sung Yong Hong5Jinwoo Lee6Zongfu An7Mei Wang8Yifei Ma8Jae-Do Nam6,7Jonghwan Suhr6,9( )
China Copper Institute of Engineering and Technology, Chinalco Research Institute of Science and Technology Co., Ltd., Beijing 102200, China
Center for Composite Materials and Concurrent Design, Sungkyunkwan University, Suwon 16419, Republic of Korea
Key Laboratory for Light-weight Materials, Nanjing Tech University, Nanjing 210009, China
Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
MPP PJT. PO R&D Center Polyolefin Business, Petrochemicals Division, LG Chem, Daejeon 34122, Republic of Korea
Department of Polymer Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
Show Author Information

Graphical Abstract

Three-dimensional (3D) porous MXene-derived aerogels are developed by dual physical and chemical crosslinking strategy. With designed interfacial engineering, the aerogels exhibit extremely high reversible compressibility and outstanding mechanical durability.

Abstract

Recently, MXenes have attracted considerable attention owing to their unique physical and chemical properties. Construction of MXenes to three-dimensional (3D) porous aerogel structures can play a critical role in realizing the profound implications of MXenes, especially for environmental remediation. Nevertheless, developing mechanically robust MXene-based aerogels with reversible compressibility under harsh conditions, such as liquid environments, remains challenging due to the insufficient interfacial strength between MXene nanosheets. Herein, 3D porous MXene-based nanocomposite aerogels are developed by dual physical and chemical crosslinking strategy with poly(vinyl alcohol) and formaldehyde in this study. The developed MXene-based nanocomposite aerogels with designed interfacial engineering exhibit outstanding structural stability and extremely high reversible compressibility up to 98% strain as well as unprecedented mechanical durability (2000 cycles at 50% strain) in water environment. Moreover, the aerogels show adaptable compressibility when exposed to different solvents, which is explained with the Hansen solubility parameter. Thanks to their high compressibility in water, the robust MXene-based aerogels exhibit excellent methylene blue adsorption performance (adsorption capacity of 117.87 mg·g−1) and superior recycling efficiency (89.48% at the 3rd cycle). The porous MXene-based nanocomposite aerogels are also demonstrated with outstanding thermal insulation capability. Therefore, by synergistically taking their porous structure and super elasticity in liquid environment, the MXene-based aerogels show great promise in diverse applications including adsorption and separation, wastewater purification desalination, and thermal management.

Electronic Supplementary Material

Video
12274_2023_5466_MOESM2_ESM.mp4
Download File(s)
12274_2023_5466_MOESM1_ESM.pdf (1.1 MB)

References

[1]

Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331.

[2]

Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.

[3]

An, H.; Habib, T.; Shah, S.; Gao, H. L.; Radovic, M.; Green, M. J.; Lutkenhaus, J. L. Surface-agnostic highly stretchable and bendable conductive MXene multilayers. Sci. Adv. 2018, 4, eaaq0118.

[4]

Liu, J.; Zhang, H. B.; Sun, R. H.; Liu, Y. F.; Liu, Z. S.; Zhou, A. G.; Yu, Z. Z. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 2017, 29, 1702367.

[5]

Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.

[6]

Dillon, A. D.; Ghidiu, M. J.; Krick, A. L.; Griggs, J.; May, S. J.; Gogotsi, Y.; Barsoum, M. W.; Fafarman, A. T. Highly conductive optical quality solution-processed films of 2D titanium carbide. Adv. Funct. Mater. 2016, 26, 4162–4168.

[7]

Ghidiu, M.; Lukatskaya, M. R.; Zhao, M. Q.; Gogotsi, Y.; Barsoum, M. W. Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature 2014, 516, 78–81.

[8]

Sun, Y.; Ding, R. N.; Hong, S. Y.; Lee, J.; Seo, Y. K.; Nam, J. D.; Suhr, J. MXene-xanthan nanocomposite films with layered microstructure for electromagnetic interference shielding and Joule heating. Chem. Eng. J. 2021, 410, 128348.

[9]

Zhu, J. Y.; Hou, J. W.; Uliana, A.; Zhang, Y. T.; Tian, M. M.; van der Bruggen, B. The rapid emergence of two-dimensional nanomaterials for high-performance separation membranes. J. Mater. Chem. A 2018, 6, 3773–3792.

[10]

Huang, K.; Li, Z. J.; Lin, J.; Han, G.; Huang, P. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 2018, 47, 5109–5124.

[11]

Yun, Q. B.; Lu, Q. P.; Zhang, X.; Tan, C. L.; Zhang, H. Three-dimensional architectures constructed from transition-metal dichalcogenide nanomaterials for electrochemical energy storage and conversion. Angew. Chem., Int. Ed. 2018, 57, 626–646.

[12]

Lai, J. P.; Nsabimana, A.; Luque, R.; Xu, G. B. 3D porous carbonaceous electrodes for electrocatalytic applications. Joule 2018, 2, 76–93.

[13]

Liu, J.; Zhang, H. B.; Xie, X.; Yang, R.; Liu, Z. S.; Liu, Y. F.; Yu, Z. Z. Multifunctional, superelastic, and lightweight MXene/polyimide aerogels. Small 2018, 14, 1802479.

[14]

Sun, Y.; Kim, M. K.; Wang, M.; Yu, J. M.; Hong, S. Y.; Nam, J. D.; Ci, L. J.; Suhr, J. Bio-inspired multiple-stimuli responsive porous materials with switchable flexibility and programmable shape morphing capability. Carbon 2020, 161, 702–711.

[15]

Hong, J. Y.; Bak, B. M.; Wie, J. J.; Kong, J.; Park, H. S. Reversibly compressible, highly elastic, and durable graphene aerogels for energy storage devices under limiting conditions. Adv. Funct. Mater. 2015, 25, 1053–1062.

[16]

Wan, S. J.; Li, X.; Chen, Y.; Liu, N. N.; Du, Y.; Dou, S. X.; Jiang, L.; Cheng, Q. F. High-strength scalable MXene films through bridging-induced densification. Science 2021, 374, 96–99.

[17]

Lee, E.; VahidMohammadi, A.; Prorok, B. C.; Yoon, Y. S.; Beidaghi, M.; Kim, D. J. Room temperature gas sensing of two-dimensional titanium carbide (MXene). ACS Appl. Mater. Interfaces 2017, 9, 37184–37190.

[18]

Xue, Q.; Zhang, H. J.; Zhu, M. S.; Pei, Z. X.; Li, H. F.; Wang, Z. F.; Huang, Y.; Huang, Y.; Deng, Q. H.; Zhou, J. et al. Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging. Adv. Mater. 2017, 29, 1604847.

[19]

Sun, Y.; Chen, L.; Yu, J. M.; Yoon, B.; Lee, S. K.; Nam, J. D.; Ci, L. J.; Suhr, J. Lightweight graphene oxide-based sponges with high compressibility and durability for dye adsorption. Carbon 2020, 160, 54–63.

[20]

Sarycheva, A.; Gogotsi, Y. Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem. Mater. 2020, 32, 3480–3488.

[21]

Liu, R.; Li, W. H. High-thermal-stability and high-thermal-conductivity Ti3C2Tx MXene/poly(vinyl alcohol) (PVA) composites. ACS Omega 2018, 3, 2609–2617.

[22]

Gao, H. L.; Zhu, Y. B.; Mao, L. B.; Wang, F. C.; Luo, X. S.; Liu, Y. Y.; Lu, Y.; Pan, Z.; Ge, J.; Shen, W. et al. Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure. Nat. Commun. 2016, 7, 12920.

[23]

Liu, H.; Chen, X. Y.; Zheng, Y. J.; Zhang, D. B.; Zhao, Y.; Wang, C. F.; Pan, C. F.; Liu, C. T.; Shen, C. Y. Lightweight, superelastic, and hydrophobic polyimide nanofiber/MXene composite aerogel for wearable piezoresistive sensor and oil/water separation applications. Adv. Funct. Mater. 2021, 31, 2008006.

[24]

Wang, L.; Zhang, M. Y.; Yang, B.; Tan, J. J.; Ding, X. Y. Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti3AlC2 MXene composite aerogel for sensitive pressure sensor. ACS Nano 2020, 14, 10633–10647.

[25]

Chen, S. C.; Koshy, D. M.; Tsao, Y.; Pfattner, R.; Yan, X. Z.; Feng, D. W.; Bao, Z. N. Highly tunable and facile synthesis of uniform carbon flower particles. J. Am. Chem. Soc. 2018, 140, 10297–10304.

[26]
Hansen, C. M. Hansen Solubility Parameters: A User’s Handbook; 2nd ed. CRC Press: Boca Raton, 2007.
[27]
Barton, A. F. M. CRC Handbook of Solubility Parameters and Other Cohesion Parameters; 2nd ed. Routledge: New York, 2017.
[28]

Zhou, Z. Y.; Li, L.; Liu, X. Y.; Lei, H. Y.; Wang, W. J.; Yang, Y. Y.; Wang, J. F.; Cao, Y. X. An efficient water-assisted liquid exfoliation of layered MXene (Ti3C2Tx) by rationally matching Hansen solubility parameter and surface tension. J. Mol. Liq. 2021, 324, 115116.

[29]

Zhang, Q. X.; Lai, H. R.; Fan, R. Z.; Ji, P. Y.; Fu, X. L.; Li, H. High concentration of Ti3C2Tx MXene in organic solvent. ACS Nano 2021, 15, 5249–5262.

[30]

Maleski, K.; Mochalin, V. N.; Gogotsi, Y. Dispersions of two-dimensional titanium carbide MXene in organic solvents. Chem. Mater. 2017, 29, 1632–1640.

[31]

Koenhen, D. M.; Smolders, C. A. The determination of solubility parameters of solvents and polymers by means of correlations with other physical quantities. J. Appl. Polym. Sci. 1975, 19, 1163–1179.

[32]

Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403.

[33]

Freundlich, H. M. F. Uber die adsorption in losungen, Z. Phys. Chem. Leipzig 1906, 57, 385–470.

[34]

Fan, L. L.; Luo, C. N.; Li, X. J.; Lu, F. G.; Qiu, H. M.; Sun, M. Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue. J. Hazard. Mater. 2012, 215–216, 272–279.

[35]

Doğan, M.; Alkan, M.; Demirbaş, Ö.; Özdemir, Y.; Özmetin, C. Adsorption kinetics of maxilon blue GRL onto sepiolite from aqueous solutions. Chem. Eng. J. 2006, 124, 89–101.

Nano Research
Pages 8025-8035
Cite this article:
Sun Y, Yang X, Ding R, et al. Super-elastic and mechanically durable MXene-based nanocomposite aerogels enabled by interfacial engineering with dual crosslinking strategy. Nano Research, 2023, 16(5): 8025-8035. https://doi.org/10.1007/s12274-023-5466-8
Topics:

794

Views

6

Crossref

4

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 28 October 2022
Revised: 19 December 2022
Accepted: 02 January 2023
Published: 04 February 2023
© Tsinghua University Press 2023
Return