AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Dual-ion pre-inserted Mo glycerate template for constructing NiMo-OS core–shell structure with boosting performance in zinc ions hybrid supercapacitors

Shujing ChenZhengpeng XiangZhenyu XiaoKun-Peng WangQi Zhang( )Lei Wang( )
State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
Show Author Information

Graphical Abstract

The core-shell heterostructured NiMo-based oxides/sulfides constructed by NH4+-inserted Mo glycerate template exhibits higher electrochemical performance than that formed by traditional Mo glycerate template.

Abstract

Zinc ion hybrid supercapacitors (ZHS) have received much attention due to the enhanced potential window range and high specific capacity. However, the appropriate positive materials with high electrochemical performance are still a challenge. Herein, NH4+ and glycerate anions pre-inserted Mo glycerate (N-MoG) spheres are synthesized and serve as the template to form NH4+ intercalated Ni3S2/Ni3O2(OH)4@MoS2 core–shell nanoflower (N-NiMo-OS) in-situ grown on nickel foam (NF) (N-NiMo-OS/NF) by sulfurization treatment. Compared with the product using traditional MoG as a template, N-NiMo-OS/NF inheriting a larger core structure from N-MoG delivers enhanced space for ions transport and volume expansion during the energy storage process, together with the synergistic effects of multi-components and the heterostructure, the as-prepared N-NiMo-OS/NF nanoflower exhibits excellent performance for the battery-type hybrid supercapacitors (BHS) and ZHS devices. Notably, the ZHS device delivers superior electrochemical performance to the BHS device, such as a higher specific capacity of 327.5 mAh·g−1 at 1 A·g−1, a preeminent energy density of 610.6 Wh·kg−1 at 1710 W·kg−1, and long cycle life. The in-situ Raman, ex-situ X-ray photoelectron spectroscopy (XPS), and theoretical calculation demonstrate the extra Zn2+ insertion/extraction storage mechanism provides enhanced electrochemical performance for ZHS device. Therefore, the dual-ion pre-inserted strategy can be extended for other advanced electrode materials in energy storage fields.

Electronic Supplementary Material

Download File(s)
12274_2022_5468_MOESM1_ESM.pdf (4.1 MB)

References

[1]

Wang, H. Y.; Ye, W. Q.; Yang, Y.; Zhong, Y. J.; Hu, Y. Zn-ion hybrid supercapacitors: Achievements, challenges and future perspectives. Nano Energy 2021, 85, 105942.

[2]

Liu, T.; Yan, R. Y.; Huang, H. J.; Pan, L.; Cao, X. B.; deMello, A.; Niederberger, M. A micromolding method for transparent and flexible thin-film supercapacitors and hybrid supercapacitors. Adv. Funct. Mater. 2020, 30, 2004410.

[3]

Yu, M. H.; Feng, X. L. Thin-film electrode-based supercapacitors. Joule 2019, 3, 338–360.

[4]

Ren, S. M.; Shi, Y. B.; Zhang, C. Z.; Cui, M. J.; Pu, J. B. Anomalous enhancement oxidation of few-layer MoS2 and MoS2/h-BN heterostructure. Nano Res. 2022, 15, 7081–7090.

[5]

Zhu, Q. C.; Zhao, D. Y.; Cheng, M. Y.; Zhou, J. Q.; Owusu, K. A.; Mai, L. Q.; Yu, Y. A new view of supercapacitors: Integrated supercapacitors. Adv. Energy Mater. 2019, 9, 1901081.

[6]

Dong, Y. R.; Zhu, Z. J.; Hu, Y. J.; He, G. J.; Sun, Y.; Cheng, Q. L.; Parkin, I. P.; Jiang, H. Supersaturated bridge-sulfur and vanadium co-doped MoS2 nanosheet arrays with enhanced sodium storage capability. Nano Res. 2021, 14, 74–80.

[7]

Zhang, Q.; Zang, Q.; Shi, Q. Q.; Xiao, Z. Y.; Wang, K. P.; Zong, L. B.; Wang, L. Formation of V6O11@Ni(OH)2/NiOOH hollow double-shell nanoflowers for the excellent cycle stability of supercapacitors. Dalton Trans. 2021, 50, 3693–3700.

[8]

Chen, H.; Liu, X. F.; Li, H. Y.; Peng, P.; Zang, S. Q. Rational designed isostructural MOF for the charge–discharge behavior study of super capacitors. Nano Res. 2022, 15, 6208–6212.

[9]

Du, W. C.; Ang, E. H. X.; Yang, Y.; Zhang, Y. F.; Ye, M. H.; Li, C. C. Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 2020, 13, 3330–3360.

[10]

Mei, Y. Y.; Liu, Y. H.; Xu, W.; Zhang, M. H.; Dong, Y. F.; Qiu, J. S. Suppressing vanadium dissolution in 2D V2O5/MXene heterostructures via organic/aqueous hybrid electrolyte for stable zinc ion batteries. Chem. Eng. J. 2023, 452, 139574.

[11]

Huang, X. Q.; Li, J. H.; Zhang, W. B.; Huang, W. J.; Yang, L. C.; Gao, Q. S. Phase engineering of CoMoO4 anode materials toward improved cycle life for Li+ storage. Chin. J. Chem. 2021, 39, 1121–1128.

[12]

Li, Y.; Yang, W.; Yang, W.; Wang, Z. Q.; Rong, J. H.; Wang, G. X.; Xu, C. J.; Kang, F. Y.; Dong, L. B. Towards high-energy and anti-self-discharge Zn-ion hybrid supercapacitors with new understanding of the electrochemistry. Nano-Micro Lett. 2021, 13, 95.

[13]

Fei, B.; Yao, Z. F.; Cai, D. P.; Si, J. H.; Wang, Q. T.; Chen, Q. D.; Sa, B. S.; Peng, K. P.; Zhan, H. B. Construction of sugar gourd-like yolk–shell Ni-Mo-Co-S nanocage arrays for high-performance alkaline battery. Energy Storage Mater. 2020, 25, 105–113.

[14]

Zhang, J. X.; Deng, Y.; Wu, Y. Q.; Xiao, Z. Y.; Liu, X. B.; Li, Z. J.; Bu, R. R.; Zhang, Q.; Sun, W.; Wang, L. Chemically coupled 0D–3D hetero-structure of Co9S8-Ni3S4 hollow spheres for Zn-based supercapacitors. Chem. Eng. J. 2022, 430, 132836.

[15]

Mahajan, H.; Mohanan, K. U.; Cho, S. Facile synthesis of biocarbon-based MoS2 composite for high-performance supercapacitor application. Nano Lett. 2022, 22, 8161–8167.

[16]

Zhang, X.; Jin, Y. H.; Zhang, K.; Yuan, Q.; Wang, H.; Jia, M. Q. Microscale and molecular regulation for molybdenum disulfide with extended layer spacing for high-performance sodium ion battery anodes. J. Power Sources 2022, 546, 231994.

[17]

Xu, W. W.; Sun, C. L.; Zhao, K. N.; Cheng, X.; Rawal, S.; Xu, Y.; Wang, Y. Defect engineering activating (boosting) zinc storage capacity of MoS2. Energy Storage Mater. 2019, 16, 527–534.

[18]

Jiang, Z. S.; Zhai, S. L.; Huang, M. Z.; Songsiriritthigul, P.; Aung, S. H.; Oo, T. Z.; Luo, M.; Chen, F. M. 3D carbon nanocones/metallic MoS2 nanosheet electrodes towards flexible supercapacitors for wearable electronics. Energy 2021, 227, 120419.

[19]

Bo, Z.; Cheng, X. N.; Yang, H. C.; Guo, X. Z.; Yan, J. H.; Cen, K. F.; Han, Z. J.; Dai, L. M. Ultrathick MoS2 films with exceptionally high volumetric capacitance. Adv. Energy Mater. 2022, 12, 2103394.

[20]

Chen, X.; Li, Y.; Li, C.; Cao, H. L.; Wang, C. Z.; Cheng, S. Y.; Zhang, Q. A novel strategy of multi-element nanocomposite synthesis for high performance ZnO-CoSe2 supercapacitor material development. Chin. J. Chem. 2021, 39, 2441–2450.

[21]

Liu, W. F.; Gao, H. X.; Zhang, Z.; Zheng, Y. F.; Wu, Y. H.; Fu, X. T.; Su, J.; Gao, Y. H. CoP/Cu3P heterostructured nanoplates for high-rate supercapacitor electrodes. Chem. Eng. J. 2022, 437, 135352.

[22]

Li, Y. X.; Wang, H.; Shu, T.; Yuan, J. Z.; Lu, G. G.; Lin, B.; Gao, Z.; Wei, F. X.; Ma, C. Y.; Qi, J. Q. et al. Two-dimensional hierarchical MoS2 lamella inserted in CoS2 flake as an advanced supercapacitor electrode. J. Energy Storage 2022, 51, 104299.

[23]

Pawar, S. A.; Patil, D. S.; Nandi, D. K.; Monirul Islam, M.; Sakurai, T.; Kim, S. H.; Cheol Shin, J. Cobalt-based metal oxide coated with ultrathin ALD-MoS2 as an electrode material for supercapacitors. Chem. Eng. J. 2022, 435, 135066.

[24]

Deng, Y. P.; Tong, X.; Pang, N.; Zhou, Y.; Wu, D. J.; Xu, S. H.; Xiong, D. Y.; Wang, L. W.; Chu, P. K. 3D MoS2/Ni3S2 heterogeneous nanorod arrays as high-performance cathode for quasi-solid-state alkaline zinc batteries. Appl. Surf. Sci. 2022, 572, 151442.

[25]

Lee, W. S. V.; Xiong, T.; Wang, X. P.; Xue, J. M. Unraveling MoS2 and transition metal dichalcogenides as functional zinc-ion battery cathode: A perspective. Small Methods 2021, 5, 2000815.

[26]

Liu, W. B.; Hao, J. W.; Xu, C. J.; Mou, J.; Dong, L. B.; Jiang, F. Y.; Kang, Z.; Wu, J. L.; Jiang, B. Z.; Kang, F. Y. Investigation of zinc ion storage of transition metal oxides, sulfides, and borides in zinc ion battery systems. Chem. Commun. 2017, 53, 6872–6874.

[27]

Li, H. F.; Yang, Q.; Mo, F. N.; Liang, G. J.; Liu, Z. X.; Tang, Z. J.; Ma, L. T.; Liu, J.; Shi, Z. C.; Zhi, C. Y. MoS2 nanosheets with expanded interlayer spacing for rechargeable aqueous Zn-ion batteries. Energy Storage Mater. 2019, 19, 94–101.

[28]

Wang, Y. W.; Yu, L.; Lou, X. W. Synthesis of highly uniform molybdenum-glycerate spheres and their conversion into hierarchical MoS2 hollow nanospheres for lithium-ion batteries. Angew. Chem., Int. Ed. 2016, 55, 7423–7426.

[29]

Jia, H.; Qiu, M. H.; Tawiah, B.; Liu, H. Q.; Fu, S. H. Interlayer-expanded MoS2 hybrid nanospheres with superior zinc storage behavior. Compos. Commun. 2021, 27, 100841.

[30]

Nguyen, T. X.; Su, Y. H.; Lin, C. C.; Ruan, J.; Ting, J. M. A new high entropy glycerate for high performance oxygen evolution reaction. Adv. Sci. 2021, 8, 2002446.

[31]

Zhang, J.; Wang, M. S.; Zeng, M.; Li, X. P.; Chen, L.; Yang, Z. L.; Chen, J. C.; Guo, B. S.; Ma, Z. Y.; Li, X. Sulfite modified and ammonium ion intercalated vanadium hydrate with enhanced redox kinetics for aqueous zinc ion batteries. J. Power Sources 2021, 496, 229832.

[32]

Gong, S.; Zhao, G. Y.; Lyu, P. B.; Sun, K. N. Insights into the intrinsic capacity of interlayer-expanded MoS2 as a Li-ion intercalation host. J. Mater. Chem. A 2019, 7, 1187–1195.

[33]

Zhang, R. D.; Wang, S.; Chou, S. L.; Jin, H. L. Research development on aqueous ammonium-ion batteries. Adv. Funct. Mater. 2022, 32, 2112179.

[34]

Song, Y.; Pan, Q.; Lv, H. Z.; Yang, D.; Qin, Z. M.; Zhang, M. Y.; Sun, X. Q.; Liu, X. X. Ammonium-ion storage using electrodeposited manganese oxides. Angew. Chem., Int. Ed. 2021, 60, 5718–5722.

[35]

Wang, J.; Zhang, R. H.; Huo, Y. Z.; Ai, Y. J.; Gu, P. C.; Wang, X. X.; Li, Q.; Yu, S. J.; Chen, Y. T.; Yu, Z. M. et al. Efficient elimination of Cr(VI) from aqueous solutions using sodium dodecyl sulfate intercalated molybdenum disulfide. Ecotoxicol. Environ. Saf. 2019, 175, 251–262.

[36]

Qin, Z. M.; Song, Y.; Liu, Y. Z.; Liu, X. X. Accessing the proton storage in neutral buffer electrolytes using an electrodeposited molybdenum phosphate. Energy Storage Mater. 2022, 53, 569–579.

[37]

Wu, J. X.; Liu, J. P.; Cui, J.; Yao, S. S.; Ihsan-Ul-Haq, M.; Mubarak, N.; Quattrocchi, E.; Ciucci, F.; Kim, J. K. Dual-phase MoS2 as a high-performance sodium-ion battery anode. J. Mater. Chem. A 2020, 8, 2114–2122.

[38]

Li, S. C.; Liu, P.; Huang, X. B.; Tang, Y. G.; Wang, H. Y. Reviving bulky MoS2 as an advanced anode for lithium-ion batteries. J. Mater. Chem. A 2019, 7, 10988–10997.

[39]

Zhang, Y.; Kang, L. P.; Li, H. M.; Huang, X. Z.; Liu, X. Y.; Guo, L. P.; Huang, L. Q. Characterization of moxa floss combustion by TG/DSC, TG-FTIR, and IR. Bioresour. Technol. 2019, 288, 121516.

[40]

Wei, X. Y.; Ma, X. Q.; Peng, X. W.; Yao, Z. L.; Yang, F.; Dai, M. Q. Comparative investigation between co-pyrolysis characteristics of protein and carbohydrate by TG-FTIR and Py-GC/MS. J. Anal. Appl. Pyrol. 2018, 135, 209–218.

[41]

Shi, Q. Q.; Zhang, Q.; Zang, Q.; Yang, Y.; Xiao, Z. Y.; Zong, L. B.; Wang, K. P.; Wang, L. Construction of Ni-Mo sulfides core–shell nanoneedle arrays for hybrid supercapacitors with high mass loading. J. Power Sources 2020, 475, 228631.

[42]

Shi, Q. Q.; Zhang, Q.; Yang, Y.; Zang, Q.; Xiao, Z. Y.; Zong, L. B.; Wang, K. P.; Wang, L. In situ construction of a heterostructured Zn-Mo-Ni-O-S hollow microflower for high-performance hybrid supercapacitors. ACS Appl. Energy Mater. 2021, 4, 801–809.

[43]

Zhou, J.; Fang, G. Z.; Pan, A. Q.; Liang, S. Q. Oxygen-incorporated MoS2 nanosheets with expanded interlayers for hydrogen evolution reaction and pseudocapacitor applications. ACS Appl. Mater. Interfaces 2016, 8, 33681–33689.

[44]

Mao, M. L.; Mei, L.; Guo, D.; Wu, L. C.; Zhang, D.; Li, Q. H.; Wang, T. H. High electrochemical performance based on the TiO2 nanobelt@few-layered MoS2 structure for lithium-ion batteries. Nanoscale 2014, 6, 12350–12353.

[45]

Shi, M. M.; Zhao, M. S.; Jiao, L. D.; Su, Z.; Li, M.; Song, X. P. Novel Mo-doped nickel sulfide thin sheets decorated with Ni-Co layered double hydroxide sheets as an advanced electrode for aqueous asymmetric super-capacitor battery. J. Power Sources 2021, 509, 230333.

[46]

Zheng, X. L.; Xu, J. B.; Yan, K. Y.; Wang, H.; Wang, Z. L.; Yang, S. H. Space-confined growth of MoS2 nanosheets within graphite: The layered hybrid of MoS2 and graphene as an active catalyst for hydrogen evolution reaction. Chem. Mater. 2014, 26, 2344–2353.

[47]

Zhou, Y.; Tong, X.; Pang, N.; Deng, Y. P.; Yan, C. H.; Wu, D. J.; Xu, S. H.; Xiong, D. Y.; Wang, L. W.; Chu, P. K. Ni3S2 nanocomposite structures doped with Zn and Co as long-lifetime, high-energy-density, and binder-free cathodes in flexible aqueous nickel-zinc batteries. ACS Appl. Mater. Interfaces 2021, 13, 34292–34300.

[48]

Zang, Q.; Cheng, X. J.; Chen, S. J.; Xiao, Z. Y.; Wang, K. P.; Zong, L. B.; Zhang, Q.; Wang, L. Oxygen defect engineering triggered by S-doping boosts the performance of H2V3O8 nanobelts for aqueous Zn-ion storage. Chem. Eng. J. 2023, 452, 139396.

[49]

Xu, L.; Zhang, Y.; Zheng, J.; Jiang, H.; Hu, T.; Meng, C. Ammonium ion intercalated hydrated vanadium pentoxide for advanced aqueous rechargeable Zn-ion batteries. Mater. Today Energy 2020, 18, 100509.

[50]

Li, Q. H.; Lu, W.; Li, Z. P.; Ning, J. Q.; Zhong, Y. J.; Hu, Y. Hierarchical MoS2/NiCo2S4@C urchin-like hollow microspheres for asymmetric supercapacitors. Chem. Eng. J. 2020, 380, 122544.

[51]

Yan, J.; Wang, S. C.; Chen, Y.; Yuan, M.; Huang, Y. P.; Lian, J. B.; Qiu, J. X.; Bao, J.; Xie, M.; Xu, H. et al. Smart in situ construction of NiS/MoS2 composite nanosheets with ultrahigh specific capacity for high-performance asymmetric supercapacitor. J. Alloys Compd. 2019, 811, 151915.

[52]

Sun, P.; Wang, R. J.; Wang, Q.; Wang, H. W.; Wang, X. F. Uniform MoS2 nanolayer with sulfur vacancy on carbon nanotube networks as binder-free electrodes for asymmetrical supercapacitor. Appl. Surf. Sci. 2019, 475, 793–802.

[53]

Zhou, Q. N.; Li, W.; Xu, H. Z.; Gao, M. Y.; Dong, X. C.; Lin, J. J. Fabrication of hierarchical integrated 3D hollow MnS@MoS2 microcubes via a template-controlled synthesis for asymmetric supercapacitors. J. Mater. Chem. A 2022, 10, 9370–9379.

[54]

Ramachandran, R.; Wang, Y.; Chandrasekaran, S.; Li, M. Z.; Luo, A. X.; Xu, Z. X.; Wang, F. Construction of MoS2 intercalated siloxene heterostructure for all-solid-state symmetric supercapacitors. Appl. Mater. Today 2022, 29, 101578.

[55]

Lu, Y. Y.; Li, Z. W.; Bai, Z. Y.; Mi, H. Y.; Ji, C. C.; Pang, H.; Yu, C.; Qiu, J. S. High energy-power Zn-ion hybrid supercapacitors enabled by layered B/N co-doped carbon cathode. Nano Energy 2019, 66, 104132.

[56]

Zhang, X. Y.; He, J. J.; Zhou, L. J.; Zhang, H. Z.; Wang, Q. S.; Huang, B. B.; Lu, X. H.; Tong, Y. X.; Wang, C. S. Ni(II) coordination supramolecular grids for aqueous nickel-zinc battery cathodes. Adv. Funct. Mater. 2021, 31, 2100443.

[57]

Yang, G. S.; Huang, J. L.; Wan, X. H.; Zhu, Y. C.; Liu, B. B.; Wang, J. W.; Hiralal, P.; Fontaine, O.; Guo, Y. Z.; Zhou, H. A low cost, wide temperature range, and high energy density flexible quasi-solid-state zinc-ion hybrid supercapacitors enabled by sustainable cathode and electrolyte design. Nano Energy 2021, 90, 106500.

[58]

Zhu, X. Q.; Guo, F. J.; Yang, Q.; Mi, H. Y.; Yang, C. C.; Qiu, J. S. Boosting zinc-ion storage capability by engineering hierarchically porous nitrogen-doped carbon nanocage framework. J. Power Sources 2021, 506, 230224.

[59]

Zhou, L. J.; Zeng, S. Q.; Zheng, D. Z.; Zeng, Y. X.; Wang, F. X.; Xu, W.; Liu, J.; Lu, X. H. NiMoO4 nanowires supported on Ni/C nanosheets as high-performance cathode for stable aqueous rechargeable nickel-zinc battery. Chem. Eng. J. 2020, 400, 125832.

[60]

Yang, L.; He, X. J.; Wei, Y. H.; Bi, H. H.; Wei, F.; Li, H. Q.; Yuan, C. Z.; Qiu, J. S. Interconnected N/P co-doped carbon nanocage as high capacitance electrode material for energy storage devices. Nano Res. 2022, 15, 4068–4075.

Nano Research
Pages 6922-6932
Cite this article:
Chen S, Xiang Z, Xiao Z, et al. Dual-ion pre-inserted Mo glycerate template for constructing NiMo-OS core–shell structure with boosting performance in zinc ions hybrid supercapacitors. Nano Research, 2023, 16(5): 6922-6932. https://doi.org/10.1007/s12274-023-5468-6
Topics:

1013

Views

6

Crossref

4

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 03 November 2022
Revised: 29 December 2022
Accepted: 05 January 2023
Published: 15 February 2023
© Tsinghua University Press 2023
Return