AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Lattice confined Ru single sites in hollow Co9S8 polyhedron triggering Co-S-Ru catalytic centers for rechargeable Zn-air battery

Xuan Liu1Siru Chen2( )Huicheng Wang3Anmin Liu1Shizheng Wen4Liwei Mi2 ( )Yanqiang Li3
School of Chemical Engineering, Dalian University of Technology, Panjin Campus, Panjin 124221, China
School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, China
School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
School of Physics and Electronic Electrical Engineering, Huaiyin Normal University, Huai’an 223300, China
Show Author Information

Graphical Abstract

Co9S8 lattice confined Ru single sites with high active Co-S-Ru catalytic centers were demonstrated to be highly efficient electrocatalyst for both oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), which could serve as bifunctional oxygen catalyst for rechargeable Zn-air batteries.

Abstract

Single-atom catalysts with precise structure and tunable coordination nature provide opportunities for developing novel catalytic centers and understanding reaction mechanisms. Herein, hollow Co9S8 polyhedrons with lattice-confined Ru single atoms (Ru-Co9S8) are fabricated. Aberration-corrected scanning transmission electron microscopy and X-ray absorption spectroscopy verify the isolated Ru atoms are confined in Co9S8 to form Co-S-Ru catalytic centers. Theoretical calculations indicate that the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) energy barriers are extensively reduced, and the d-band center of Co9S8 downshifts from the Fermi level, therefore boosting the desorption of O-containing intermediates. Consequently, the Ru-Co9S8 exhibits an ultralow overpotential of 163 mV at 10 mA·cm−2 for OER and could catalyze a rechargeable Zn-air battery with a high-power density of 92.0 mW·cm−2. This work provides a promising approach for designing novel bifunctional catalytic active centers for energy conversion.

Electronic Supplementary Material

Download File(s)
12274_2022_5469_MOESM1_ESM.pdf (2.5 MB)

References

[1]

Wu, X.; Zhang, H. B.; Zhang, J.; Lou, X. W. D. Recent advances on transition metal dichalcogenides for electrochemical energy conversion. Adv. Mater. 2021, 33, 2008376.

[2]

Pan, J.; Tian, X. L.; Zaman, S.; Dong, Z. H.; Liu, H. F.; Park, H. S.; Xia, B. Y. Recent progress on transition metal oxides as bifunctional catalysts for lithium-air and zinc-air batteries. Batteries Supercaps 2019, 2, 336–347.

[3]

Rahman, S. T.; Rhee, K. Y.; Park, S. J. Nanostructured multifunctional electrocatalysts for efficient energy conversion systems: Recent perspectives. Nanotechnol. Rev. 2021, 10, 137–157.

[4]

Wang, J. J.; Zhang, Z.; Ding, J.; Zhong, C.; Deng, Y. D.; Han, X. P.; Hu, W. B. Recent progresses of micro-nanostructured transition metal compound-based electrocatalysts for energy conversion technologies. Sci. China Mater. 2020, 64, 1–26.

[5]

Deng, Y. P.; Liang, R. L.; Jiang, G. P.; Jiang, Y.; Yu, A. P.; Chen, Z. W. The current state of aqueous Zn-based rechargeable batteries. ACS Energy Lett. 2020, 5, 1665–1675.

[6]

Zheng, Q.; Xiong, Y.; Tang, K.; Wu, M. Z.; Hu, H. B.; Zhou, T. P.; Wu, Y. D.; Cao, Z. Q.; Sun, J.; Yu, X. X. et al. Modulation of pore-size in N,S-codoped carbon/Co9S8 hybrid for a stronger O2 affinity toward rechargable zinc-air battery. Nano Energy 2022, 92, 106750.

[7]

Tang, K.; Yuan, C. Z.; Xiong, Y.; Hu, H. B.; Wu, M. Z. Inverse-opal-structured hybrids of N,S-codoped-carbon-confined Co9S8 nanoparticles as bifunctional oxygen electrocatalyst for on-chip all-solid-state rechargeable Zn-air batteries. Appl. Catal. B: Environ. 2020, 260, 118209.

[8]

Wang, Y.; Wu, X. D.; Jiang, X.; Wu, X. R.; Tang, Y. W.; Sun, D. M.; Fu, G. T. Citrulline-induced mesoporous CoS/CoO heterojunction nanorods triggering high-efficiency oxygen electrocatalysis in solid-state Zn-air batteries. Chem. Eng. J. 2022, 434, 134744.

[9]

Liu, X.; Zhang, G. Y.; Wang, L.; Fu, H. G. Structural design strategy and active site regulation of high-efficient bifunctional oxygen reaction electrocatalysts for Zn-air battery. Small 2021, 17, 2006766.

[10]

Wei, L. C.; Zhang, Y. F.; Yang, Y.; Ye, M. H.; Li, C. C. Manipulating the electronic structure of graphite intercalation compounds for boosting the bifunctional oxygen catalytic performance. Small 2022, 18, 2107667.

[11]

Sui, X. L.; Zhang, L.; Li, J. J.; Doyle-Davis, K.; Li, R. Y.; Wang, Z. B.; Sun, X. L. Advanced support materials and interactions for atomically dispersed noble-metal catalysts: From support effects to design strategies. Adv. Energy Mater. 2021, 12, 2102556.

[12]

Chen, S. R.; Cui, M.; Yin, Z. H.; Xiong, J. B.; Mi, L. W.; Li, Y. Q. Single-atom and dual-atom electrocatalysts derived from metal organic frameworks: Current progress and perspectives. ChemSusChem 2021, 14, 73–93.

[13]

Lang, R.; Du, X. R.; Huang, Y. K.; Jiang, X. Z.; Zhang, Q.; Guo, Y. L.; Liu, K. P.; Qiao, B. T.; Wang, A. Q.; Zhang, T. Single-atom catalysts based on the metal-oxide interaction. Chem. Rev. 2020, 120, 11986–12043.

[14]

Zhao, X.; Li, X.; Bi, Z. H.; Wang, Y. W.; Zhang, H. B.; Zhou, X. H.; Wang, Q.; Zhou, Y. T.; Wang, H. S.; Hu, G. Z. Boron modulating electronic structure of FeN4C to initiate high-efficiency oxygen reduction reaction and high-performance zinc-air battery. J. Energy Chem. 2022, 66, 514–524.

[15]

Yan, L.; Xie, L. Y.; Wu, X. L.; Qian, M. Y.; Chen, J. R.; Zhong, Y. J.; Hu, Y. Precise regulation of pyrrole-type single-atom Mn-N4 sites for superior pH-universal oxygen reduction. Carbon Energy 2021, 3, 856–865.

[16]

He, B.; Deng, Q. H.; Wang, Y. C.; Tang, Y. W.; Hao, Q. L.; Liu, H. K.; Su, Z. Modification of surface electronic structure via Ru-doping: Porous Ru-CoFeP nanocubes to boost the oxygen evolution reaction. J. Power Sources 2022, 537, 231506.

[17]

Sun, T.; Mitchell, S.; Li, J.; Lyu, P.; Wu, X. B.; Pérez-Ramírez, J.; Lu, J. Design of local atomic environments in single-atom electrocatalysts for renewable energy conversions. Adv. Mater. 2021, 33, 2003075.

[18]

Xu, L.; Deng, D. J.; Tian, Y. H.; Li, H. P.; Qian, J. C.; Wu, J. C.; Li, H. N. Dual-active-sites design of CoNx anchored on zinc-coordinated nitrogen-codoped porous carbon with efficient oxygen catalysis for high-stable rechargeable zinc-air batteries. Chem. Eng. J. 2021, 408, 127321.

[19]

Lee, D. E.; Moru, S.; Jo, W. K.; Tonda, S. Structurally engineered vitamin B12 on graphene as a bioinspired metal-N-C-based electrocatalyst for effective overall water splitting in alkaline media. Appl. Surf. Sci. 2022, 575, 151729.

[20]

Peng, L. S.; Shang, L.; Zhang, T. R.; Waterhouse, G. I. N. Recent advances in the development of single-atom catalysts for oxygen electrocatalysis and zinc-air batteries. Adv. Energy Mater. 2020, 10, 2003018.

[21]

Xu, R.; Wang, X. K.; Zhang, C. H.; Zhang, Y.; Jiang, H. Q.; Wang, H. L.; Su, G.; Huang, M. H.; Toghan, A. Engineering solid–liquid–gas interfaces of single-atom cobalt catalyst for enhancing the robust stability of neutral Zn-air batteries under high current density. Chem. Eng. J. 2022, 433, 133685.

[22]

Yan, Y.; Cheng, H. Y.; Qu, Z. H.; Yu, R.; Liu, F.; Ma, Q. W.; Zhao, S.; Hu, H.; Cheng, Y.; Yang, C. Y. et al. Recent progress on the synthesis and oxygen reduction applications of Fe-based single-atom and double-atom catalysts. J. Mater. Chem. A 2021, 9, 19489–19507.

[23]

Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. Electronic metal–support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 2020, 32, 2003300.

[24]

Zheng, X. B.; Li, P.; Dou, S. X.; Sun, W. P.; Pan, H. G.; Wang, D. S.; Li, Y. D. Non-carbon-supported single-atom site catalysts for electrocatalysis. Energy Environ. Sci. 2021, 14, 2809–2858.

[25]

Tang, X. R.; Li, N.; Pang, H. Metal-organic frameworks-derived metal phosphides for electrochemistry application. Green Energy Environ. 2022, 7, 636–661.

[26]

O’Connor, N. J.; Jonayat, A. S. M.; Janik, M. J.; Senftle, T. P. Interaction trends between single metal atoms and oxide supports identified with density functional theory and statistical learning. Nat. Catal. 2018, 1, 531–539.

[27]

Zhai, P. L.; Xia, M. Y.; Wu, Y. Z.; Zhang, G. H.; Gao, J. F.; Zhang, B.; Cao, S. Y.; Zhang, Y. T.; Li, Z. W.; Fan, Z. Z. et al. Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting. Nat. Commun. 2021, 12, 4587.

[28]

Sun, Y. B.; Li, R. P.; Song, C. L.; Zhang, H.; Cheng, Y. C.; Nie, A. M.; Li, H. C.; Dionysiou, D. D.; Qian, J. S.; Pan, B. C. Origin of the improved reactivity of MoS2 single crystal by confining lattice Fe atom in peroxymonosulfate-based Fenton-like reaction. Appl. Catal. B: Environ. 2021, 298, 120537.

[29]

Zhang, B. H.; Zhao, G. Q.; Zhang, B. X.; Xia, L. X.; Jiang, Y. Z.; Ma, T. Y.; Gao, M. X.; Sun, W. P.; Pan, H. G. Lattice-confined Ir clusters on Pd nanosheets with charge redistribution for the hydrogen oxidation reaction under alkaline conditions. Adv. Mater. 2021, 33, 2105400.

[30]

Zhou, Y. Y.; Xie, Z. Y.; Jiang, J. X.; Wang, J.; Song, X. Y.; He, Q.; Ding, W.; Wei, Z. D. Lattice-confined Ru clusters with high CO tolerance and activity for the hydrogen oxidation reaction. Nat. Catal. 2020, 3, 454–462.

[31]

Tang, L.; Meng, X. G.; Deng, D. H.; Bao, X. H. Confinement catalysis with 2D materials for energy conversion. Adv. Mater. 2019, 31, 1901996.

[32]

Shi, Z. P.; Wang, Y.; Li, J.; Wang, X.; Wang, Y. B.; Li, Y.; Xu, W. L.; Jiang, Z.; Liu, C. P.; Xing, W. et al. Confined Ir single sites with triggered lattice oxygen redox: Toward boosted and sustained water oxidation catalysis. Joule 2021, 5, 2164–2176.

[33]

Li, Y. Z.; Cao, R.; Li, L. B.; Tang, X. N.; Chu, T. L.; Huang, B. Y.; Yuan, K.; Chen, Y. W. Simultaneously integrating single atomic cobalt sites and Co9S8 nanoparticles into hollow carbon nanotubes as trifunctional electrocatalysts for Zn-air batteries to drive water splitting. Small 2020, 16, 1906735.

[34]

Dong, D. Q.; Wu, Z. X.; Wang, J.; Fu, G. T.; Tang, Y. W. Recent progress in Co9S8-based materials for hydrogen and oxygen electrocatalysis. J. Mater. Chem. A 2019, 7, 16068–16088.

[35]

Sun, C. B.; Ding, J.; Wang, H. Z.; Liu, J.; Han, X. P.; Deng, Y. D.; Zhong, C.; Hu, W. B. Cobalt sulfides constructed heterogeneous interfaces decorated on N,S-codoped carbon nanosheets as a highly efficient bifunctional oxygen electrocatalyst. J. Mater. Chem. A 2021, 9, 13926–13935.

[36]

Wang, W. B.; Yang, Y.; Zhao, Y.; Wang, S. Z.; Ai, X. M.; Fang, J. K.; Liu, Y. W. Multi-scale regulation in S, N co-incorporated carbon encapsulated Fe-doped Co9S8 achieving efficient water oxidation with low overpotential. Nano Res. 2021, 15, 872–880.

[37]

Hu, H.; Han, L.; Yu, M. Z.; Wang, Z. Y.; Lou, X. W. Metal-organic-framework-engaged formation of Co nanoparticle-embedded carbon@Co9S8 double-shelled nanocages for efficient oxygen reduction. Energy Environ. Sci. 2016, 9, 107–111.

[38]

Liu, X.; Yin, Z. H.; Cui, M.; Gao, L. G.; Liu, A. M.; Su, W. N.; Chen, S. R.; Ma, T. L.; Li, Y. Q. Double shelled hollow CoS2@MoS2@NiS2 polyhedron as advanced trifunctional electrocatalyst for zinc-air battery and self-powered overall water splitting. J. Colloid Interf. Sci. 2022, 610, 653–662.

[39]

Zhang, Z. H.; Yao, S. Y.; Hu, X. B.; Okejiri, F.; He, K.; Liu, P. Y.; Tian, Z. Q.; Dravid, V. P.; Fu, J.; Zhu, X. et al. Sacrificial synthesis of supported Ru single atoms and clusters on N-doped carbon derived from covalent triazine frameworks: A charge modulation approach. Adv. Sci. 2021, 8, 2001493.

[40]

Zhang, W. M.; Zhao, X. Y.; Zhao, Y. W.; Zhang, J. Q.; Li, X. T.; Fang, L. D.; Li, L. Mo-doped Zn, Co zeolitic imidazolate framework-derived Co9S8 quantum dots and MoS2 embedded in three-dimensional nitrogen-doped carbon nanoflake arrays as an efficient trifunctional electrocatalysts for the oxygen reduction reaction, oxygen evolution reaction, and hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2020, 12, 10280–10290.

[41]

Zhou, S. Z.; Jang, H.; Qin, Q.; Li, Z. J.; Kim, M. G.; Li, C.; Liu, X. E.; Cho, J. Three-dimensional hierarchical Co(OH)F nanosheet arrays decorated by single-atom Ru for boosting oxygen evolution reaction. Sci. China Mater. 2021, 64, 1408–1417.

[42]
Yin, Z. H.; Liu, X.; Chen, S. R.; Ma, T. L.; Li, Y. Q. Interface engineering and anion engineering of Mo-based heterogeneous electrocatalysts for hydrogen evolution reaction. Energy Environ. Mater., in press, https://doi.org/10.1002/eem2.12310.
[43]

Li, Y. Q.; Cui, M.; Yin, Z. H.; Chen, S. R.; Ma, T. L. Metal-organic framework based bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries: Current progress and prospects. Chem. Sci. 2020, 11, 11646–11671.

[44]

Fan, K.; Zou, H. Y.; Lu, Y.; Chen, H.; Li, F. S.; Liu, J. X.; Sun, L. C.; Tong, L. P.; Toney, M. F.; Sui, M. L. et al. Direct observation of structural evolution of metal chalcogenide in electrocatalytic water oxidation. ACS Nano 2018, 12, 12369–12379.

[45]

Muthukutty, B.; Yoo, H. Fabrication of efficient electrocatalytic system with ruthenium cobalt sulfide over a carbon cloth. J. Ind. Eng. Chem. 2022, 113, 316–324.

[46]

Hao, P.; Xin, Y.; Wang, Q.; Li, L. Y.; Zhao, Z. H.; Wen, H. G.; Xie, J. F.; Cui, G. W.; Tang, B. Lanthanum-incorporated β-Ni(OH)2 nanoarrays for robust urea electro-oxidation. Chem. Commun. 2021, 57, 2029–2032.

[47]

Lyu, D. D.; Yao, S. X.; Ali, A.; Tian, Z. Q.; Tsiakaras, P.; Shen, P. K. N, S codoped carbon matrix-encapsulated Co9S8 nanoparticles as a highly efficient and durable bifunctional oxygen redox electrocatalyst for rechargeable Zn-air batteries. Adv. Energy Mater. 2021, 11, 2101249.

[48]

Zhang, J. T.; Zhang, M.; Zeng, Y.; Chen, J. S.; Qiu, L. X.; Zhou, H.; Sun, C. J.; Yu, Y.; Zhu, C. Z.; Zhu, Z. H. Single Fe atom on hierarchically porous S,N-codoped nanocarbon derived from porphyra enable boosted oxygen catalysis for rechargeable Zn-air batteries. Small 2019, 15, 1900307.

[49]

Hong, J.; Hyun, S.; Tsipoaka, M.; Samdani, J. S.; Shanmugam, S. RuFe alloy nanoparticle-supported mesoporous carbon: Efficient bifunctional catalyst for Li-O2 and Zn-air batteries. ACS Catal. 2022, 12, 1718–1731.

[50]

Zhao, S. L.; Ban, L. N.; Zhang, J. T.; Yi, W. T.; Sun, W.; Zhu, Z. H. Cobalt and nitrogen co-doping of porous carbon nanosphere as highly effective catalysts for oxygen reduction reaction and Zn-air battery. Chem. Eng. J. 2021, 409, 128171.

Nano Research
Pages 6701-6709
Cite this article:
Liu X, Chen S, Wang H, et al. Lattice confined Ru single sites in hollow Co9S8 polyhedron triggering Co-S-Ru catalytic centers for rechargeable Zn-air battery. Nano Research, 2023, 16(5): 6701-6709. https://doi.org/10.1007/s12274-023-5469-5
Topics:

877

Views

15

Crossref

14

Web of Science

15

Scopus

0

CSCD

Altmetrics

Received: 03 November 2022
Revised: 21 December 2022
Accepted: 03 January 2023
Published: 11 February 2023
© Tsinghua University Press 2023
Return