AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Rapid CO2-laser scribing fabrication of an electrochemical sensor for the direct detection of Pb2+ and Cd2+

Guanglei Chu1,2,6Yanyan Zhang2Zhongrui Zhou2Weixuan Zeng1Dongfei Chen3Siping Yu1,5Jiemin Wang4Yemin Guo2Xia Sun2( )Ming Li1,2( )
Hunan Agricultural Equipment Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
Longping Branch, College of Biology, Hunan University, Changsha 410125, China
Department of Materials Science and Engineering, National University of Singapore, No. 21 Lower Kent Ridge Road, Singapore 119077, Singapore
Show Author Information

Graphical Abstract

This study reports a scheme for the rapid preparation of electrochemical sensors using laser-induced graphene, enabling the rapid detection of Pb2+ and Cd2+ without the use of toxic reagents and additional modification steps.

Abstract

Laser-induced graphene (LIG) is a highly promising preparation material for electrochemical sensors; however, its preparation speed and nanomaterial modification steps significantly limit its mass production. Herein, this study proposed a new laser printing strategy that considerably improved the preparation speed of LIG with excellent electrochemical performance. Using the optimal parameters (laser power of 1%, scribing spacing of 0.12 mm, and scribing speed of 100 mm·s−1), it took only 14.2 s to complete the preparation of the detection electrode. Thus, we successfully detected Cd2+ and Pb2+ without any toxic reagents or electrode modification steps. The limits of detection of the sensor were 0.914 and 0.916 μg·L−1 for Cd2+ and Pb2+, respectively, which are significantly lower than the required values for drinking-water quality, according to the World Health Organization guidelines. This study provides a novel approach for the rapid detection of heavy-metal ions.

Electronic Supplementary Material

Video
12274_2023_5471_MOESM2_ESM.mp4
Download File(s)
12274_2023_5471_MOESM1_ESM.pdf (733.6 KB)

References

[1]

Zamora-Ledezma, C.; Negrete-Bolagay, D.; Figueroa, F.; Zamora-Ledezma, E.; Ni, M.; Alexis, F.; Guerrero, V. H. Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods. Environ. Technol. Innov. 2021, 22, 101504.

[2]

Malik, L. A.; Bashir, A.; Qureashi, A.; Pandith, A. H. Detection and removal of heavy metal ions: A review. Environ. Chem. Lett. 2019, 17, 1495–1521.

[3]

Lin, Y.; Gritsenko, D.; Feng, S. L.; Teh, Y. C.; Lu, X. N.; Xu, J. Detection of heavy metal by paper-based microfluidics. Biosens. Bioelectron. 2016, 83, 256–266.

[4]

Yi, Y. H.; Zhao, Y.; Zhang, Z. M.; Wu, Y. T.; Zhu, G. B. Recent developments in electrochemical detection of cadmium. Trends Environ. Anal. Chem. 2022, 33, e00152.

[5]

Chen, D. F.; Wu, Y. F.; Tilley, R. D.; Gooding, J. J. Rapid and ultrasensitive electrochemical detection of DNA methylation for ovarian cancer diagnosis. Biosens. Bioelectron. 2022, 206, 114126.

[6]

Yang, D.; Wang, L.; Chen, Z. L.; Megharaj, M.; Naidu, R. Anodic stripping voltammetric determination of traces of Pb(II) and Cd(II) using a glassy carbon electrode modified with bismuth nanoparticles. Microchim. Acta 2014, 181, 1199–1206.

[7]

Tesarova, E.; Baldrianova, L.; Hocevar, S. B.; Svancara, I.; Vytras, K.; Ogorevc, B. Anodic stripping voltammetric measurement of trace heavy metals at antimony film carbon paste electrode. Electrochim. Acta 2009, 54, 1506–1510.

[8]

Yao, Y.; Wu, H.; Ping, J. F. Simultaneous determination of Cd(II) and Pb(II) ions in honey and milk samples using a single-walled carbon nanohorns modified screen-printed electrochemical sensor. Food Chem. 2019, 274, 8–15.

[9]

Zhao, G.; Wang, X. C.; Liu, G.; Thuy, N. T. D. A disposable and flexible electrochemical sensor for the sensitive detection of heavy metals based on a one-step laser-induced surface modification: A new strategy for the batch fabrication of sensors. Sensors Actuat. B: Chem. 2022, 350, 130834.

[10]

Liu, X. X.; Yao, Y.; Ying, Y. B.; Ping, J. F. Recent advances in nanomaterial-enabled screen-printed electrochemical sensors for heavy metal detection. TrAC Trends Anal. Chem. 2019, 115, 187–202.

[11]

Zhang, Z. H.; Ji, H. F.; Song, Y. P.; Zhang, S.; Wang, M. H.; Jia, C. C.; Tian, J. Y.; He, L. H.; Zhang, X. J.; Liu, C. S. Fe(III)-based metal-organic framework-derived core–shell nanostructure: Sensitive electrochemical platform for high trace determination of heavy metal ions. Biosens. Bioelectron. 2017, 94, 358–364.

[12]

Huang, W. J.; Zhang, Y. Y.; Li, Y.; Zeng, T.; Wan, Q. J.; Yang, N. J. Morphology-controlled electrochemical sensing of environmental Cd2+ and Pb2+ ions on expanded graphite supported CeO2 nanomaterials. Anal. Chim. Acta 2020, 1126, 63–71.

[13]

Han, Z. Y.; Xiao, X.; Qu, H. J.; Hu, M. L.; Au, C.; Nashalian, A.; Xiao, X.; Wang, Y. X.; Yang, L.; Jia, F. C. et al. Ultrafast and selective nanofiltration enabled by graphene oxide membranes with unzipped carbon nanotube networks. ACS Appl. Mater. Interfaces 2022, 14, 1850–1860.

[14]

Zhao, F. N.; Wu, J.; Ying, Y. B.; She, Y. X.; Wang, J.; Ping, J. F. Carbon nanomaterial-enabled pesticide biosensors: Design strategy, biosensing mechanism, and practical application. TrAC Trends Anal. Chem. 2018, 106, 62–83.

[15]

Yao, Y.; Jiang, C. M.; Ping, J. F. Flexible freestanding graphene paper-based potentiometric enzymatic aptasensor for ultrasensitive wireless detection of kanamycin. Biosens. Bioelectron. 2019, 123, 178–184.

[16]

Xiao, X.; Xiao, X.; Zhou, Y. H.; Zhao, X.; Chen, G. R.; Liu, Z. X.; Wang, Z. H.; Lu, C. Y.; Hu, M. L.; Nashalian, A. et al. An ultrathin rechargeable solid-state zinc ion fiber battery for electronic textiles. Sci. Adv. 2021, 7, eabl3742.

[17]

Ye, R. Q.; James, D. K.; Tour, J. M. Laser-induced graphene. Acc. Chem. Res. 2018, 51, 1609–1620.

[18]

Zhu, B. C.; Yu, L.; Beikzadeh, S.; Zhang, S. Y.; Zhang, P. K.; Wang, L.; Travas-Sejdic, J. Disposable and portable gold nanoparticles modified-laser-scribed graphene sensing strips for electrochemical, non-enzymatic detection of glucose. Electrochim. Acta 2021, 378, 138132.

[19]

Luo, J. J.; Fan, F. R.; Jiang, T.; Wang, Z. W.; Tang, W.; Zhang, C. P.; Liu, M. M.; Cao, G. Z.; Wang, Z. L. Integration of micro-supercapacitors with triboelectric nanogenerators for a flexible self-charging power unit. Nano Res. 2015, 8, 3934–3943.

[20]

Zheng, B.; Zhao, G. G.; Yan, Z.; Xie, Y. C.; Lin, J. Direct freeform laser fabrication of 3D conformable electronics. Adv. Funct. Mater. 2023, 33, 2210084.

[21]

Yang, L.; Zheng, G. H.; Cao, Y. Q.; Meng, C. Z.; Li, Y. H.; Ji, H. D.; Chen, X.; Niu, G. Y.; Yan, J. Y.; Xue, Y. et al. Moisture-resistant, stretchable NOx gas sensors based on laser-induced graphene for environmental monitoring and breath analysis. Microsyst. Nanoeng. 2022, 8, 78.

[22]

Jeong, S. E.; Kim, S.; Han, J. H.; Pak, J. J. Simple laser-induced graphene fiber electrode fabrication for high-performance heavy-metal sensing. Microchem. J. 2022, 172, 106950.

[23]

Narouei, F. H.; Livernois, L.; Andreescu, D.; Andreescu, S. Highly sensitive mercury detection using electroactive gold-decorated polymer nanofibers. Sensors Actuat. B: Chem. 2021, 329, 129267.

[24]

Ping, J. F.; Wang, Y. X.; Wu, J.; Ying, Y. B. Development of an electrochemically reduced graphene oxide modified disposable bismuth film electrode and its application for stripping analysis of heavy metals in milk. Food Chem. 2014, 151, 65–71.

[25]

Ping, J. F.; Wu, J.; Ying, Y. B. Determination of trace heavy metals in milk using an ionic liquid and bismuth oxide nanoparticles modified carbon paste electrode. Chin. Sci. Bull. 2012, 57, 1781–1787.

[26]

Lee, S.; Oh, J.; Kim, D.; Piao, Y. Z. A sensitive electrochemical sensor using an iron oxide/graphene composite for the simultaneous detection of heavy metal ions. Talanta 2016, 160, 528–536.

[27]

Yao, Y.; Wang, G. X.; Chu, G. L.; An, X. S.; Guo, Y. M.; Sun, X. The development of a novel biosensor based on gold nanocages/graphene oxide-chitosan modified acetylcholinesterase for organophosphorus pesticide detection. New J. Chem. 2019, 43, 13816–13826.

[28]

Manjakkal, L.; Shakthivel, D.; Dahiya, R. Flexible printed reference electrodes for electrochemical applications. Adv. Mater. Technol. 2018, 3, 1800252.

[29]

Behrent, A.; Griesche, C.; Sippel, P.; Baeumner, A. J. Process-property correlations in laser-induced graphene electrodes for electrochemical sensing. Microchim. Acta 2021, 188, 159.

[30]

Cao, L. J.; Zhu, S. R.; Pan, B. H.; Dai, X. Y.; Zhao, W. W.; Liu, Y.; Xie, W. P.; Kuang, Y. B.; Liu, X. Q. Stable and durable laser-induced graphene patterns embedded in polymer substrates. Carbon 2020, 163, 85–94.

[31]

Wei, Y.; Gao, C.; Meng, F. L.; Li, H. H.; Wang, L.; Liu, J. H.; Huang, X. J. SnO2/reduced graphene oxide nanocomposite for the simultaneous electrochemical detection of cadmium(II), lead(II), copper(II), and mercury(II): An interesting favorable mutual interference. J. Phys. Chem. C 2012, 116, 1034–1041.

[32]

Lu, Z. W.; Lin, X. N.; Zhang, J. J.; Dai, W. L.; Liu, B. C.; Mo, G. Q.; Ye, J. P.; Ye, J. S. Ionic liquid/poly-L-cysteine composite deposited on flexible and hierarchical porous laser-engraved graphene electrode for high-performance electrochemical analysis of lead ion. Electrochim. Acta 2019, 295, 514–523.

[33]

Lin, X. N.; Lu, Z. W.; Zhang, Y. X.; Liu, B. C.; Mo, G. Q.; Li, J. Y.; Ye, J. S. A glassy carbon electrode modified with a bismuth film and laser etched graphene for simultaneous voltammetric sensing of Cd(II) and Pb(II). Microchim. Acta 2018, 185, 438.

[34]

Lin, X. N.; Lu, Z. W.; Dai, W. L.; Liu, B. C.; Zhang, Y. X.; Li, J. Y.; Ye, J. S. Laser engraved nitrogen-doped graphene sensor for the simultaneous determination of Cd(II) and Pb(II). J. Electroanal. Chem. 2018, 828, 41–49.

Nano Research
Pages 7671-7681
Cite this article:
Chu G, Zhang Y, Zhou Z, et al. Rapid CO2-laser scribing fabrication of an electrochemical sensor for the direct detection of Pb2+ and Cd2+. Nano Research, 2023, 16(5): 7671-7681. https://doi.org/10.1007/s12274-023-5471-y
Topics:

1249

Views

6

Crossref

4

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 10 November 2022
Revised: 22 December 2022
Accepted: 03 January 2023
Published: 13 March 2023
© Tsinghua University Press 2023
Return