AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A boronic acid conjugation integrates antitumor drugs into albumin-binding prodrugs-based nanoparticles with robust efficiency for cancer therapy

Weiyue Ban1,§Qiuhua Luo2,§Chengda Yan3,§Xiaoying Fan3,§Guorui Zhu1Maosheng Cheng4Zhonggui He1Mengchi Sun5( )Jin Sun1( )
Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, China
Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang 110102, China
Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China

§ Weiyue Ban, Qiuhua Luo, Chengda Yan, and Xiaoying Fan contributed equally to this work.

Show Author Information

Graphical Abstract

Schematic diagram of the preparation and in vivo fate of phenylboronic acid-conjugated paclitaxel-bovine serum albumin nanoparticles (P-PTX-BSA NPs) and PTX-BSA NPs for cancer therapy. In our research, it has been found that P-PTX-BSA NPs exhibited superior colloidal stability and intratumoral enrichment over PTX-BSA NPs through one-step nano-precipitation approach.

Abstract

Despite great therapeutic effect of Abraxane®, complex preparation technology and unfavorable pharmacokinetics still restricted the clinical application of albumin-based paclitaxel (PTX) nanoparticles (NPs). Herein, we reported that an albumin-binding prodrug, phenylboronic acid-conjugated PTX (P-PTX), can form the uniform NPs with the diameters around 100 nm with the help of albumin via simple one-step nano-precipitation method. The albumin-based nanomedicines were stabilized by the integration of a single boronic acid with PTX due to the increased affinity based on multiple intermolecular interactions. We found that albumin-based P-PTX NPs exhibited superior colloidal stability over albumin-based PTX NPs through one-step nano-precipitation approach, achieving longer in vivo circulation time and higher concentration in tumor than those of the marketed Abraxane®. Furthermore, the albumin-based P-PTX NPs with great stability and enhanced intratumoral enrichment, increased the maximum tolerated dose of PTX, remarkably suppressed the growth of breast tumor and lung metastasis, and prolonged survival of melanoma tumors-bearing mice. Such a convenient and effective system gains an insight into the impact of phenylboronic acid group on the albumin-based PTX NPs, and provides potent strategy for the rational design of albumin-based antitumor nanomedicines.

Electronic Supplementary Material

Download File(s)
12274_2023_5474_MOESM1_ESM.pdf (4.1 MB)

References

[1]

Hoogenboezem, E. N.; Duvall, C. L. Harnessing albumin as a carrier for cancer therapies. Adv. Drug Deliv. Rev. 2018, 130, 73–89.

[2]

Liu, Z. B.; Chen, X. Y. Simple bioconjugate chemistry serves great clinical advances: Albumin as a versatile platform for diagnosis and precision therapy. Chem. Soc. Rev. 2016, 45, 1432–1456.

[3]

Zhao, W.; Li, T.; Long, Y.; Guo, R.; Sheng, Q. L.; Lu, Z. Z.; Li, M.; Li, J. X.; Zang, S. Y.; Zhang, Z. R. et al. Self-promoted albumin-based nanoparticles for combination therapy against metastatic breast cancer via a hyperthermia-induced “platelet bridge”. ACS Appl. Mater. Interfaces 2021, 13, 25701–25714.

[4]

Ban, W. Y.; Guan, J. H.; Huang, H. W.; He, Z. G.; Sun, M. C.; Liu, F. N.; Sun, J. Emerging systemic delivery strategies of oncolytic viruses: A key step toward cancer immunotherapy. Nano Res. 2022, 15, 4137–4153.

[5]

Rojas, L. A.; Condezo, G. N.; Moreno, R.; Fajardo, C. A.; Arias-Badia, M.; San Martín, C.; Alemany, R. Albumin-binding adenoviruses circumvent pre-existing neutralizing antibodies upon systemic delivery. J. Control. Release 2016, 237, 78–88.

[6]

Desai, N.; Trieu, V.; Yao, Z. W.; Louie, L.; Ci, S.; Yang, A.; Tao, C. L.; De, T.; Beals, B.; Dykes, D. et al. Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin. Cancer Res. 2006, 12, 1317–1324.

[7]

Sofias, A. M.; Dunne, M.; Storm, G.; Allen, C. The battle of “nano” paclitaxel. Adv. Drug Deliv. Rev. 2017, 122, 20–30.

[8]

Karimi, M.; Bahrami, S.; Ravari, S. B.; Zangabad, P. S.; Mirshekari, H.; Bozorgomid, M.; Shahreza, S.; Sori, M.; Hamblin, M. R. Albumin nanostructures as advanced drug delivery systems. Expert Opin. Drug Deliv. 2016, 13, 1609–1623.

[9]

Hong, S.; Choi, D. W.; Kim, H. N.; Park, C. G.; Lee, W.; Park, H. H. Protein-based nanoparticles as drug delivery systems. Pharmaceutics 2020, 12, 604.

[10]

Norouzi, M.; Amerian, M.; Amerian, M.; Atyabi, F. Clinical applications of nanomedicine in cancer therapy. Drug Discov. Today 2020, 25, 107–125.

[11]

Liu, C. Y.; Wan, T.; Wang, H.; Zhang, S.; Ping, Y.; Cheng, Y. Y. A boronic acid-rich dendrimer with robust and unprecedented efficiency for cytosolic protein delivery and CRISPR-Cas9 gene editing. Sci. Adv. 2019, 5, eaaw8922.

[12]

Murtaza, G.; Rizvi, A. S.; Irfan, M.; Li, L. S.; Qu, F. Determination of glycated albumin in serum and saliva by capillary electrophoresis utilizing affinity of 3-acrylamido phenylboronic acid selected by virtual screening and molecular docking. J. Chromatogr. A 2021, 1636, 461793.

[13]

Lv, S. X.; Wu, Y. C.; Cai, K. M.; He, H.; Li, Y. J.; Lan, M.; Chen, X. S.; Cheng, J. J.; Yin, L. C. High drug loading and sub-quantitative loading efficiency of polymeric micelles driven by donor–receptor coordination interactions. J. Am. Chem. Soc. 2018, 140, 1235–1238.

[14]

Wang, J.; Wu, W.; Zhang, Y. J.; Wang, X.; Qian, H. Q.; Liu, B. R.; Jiang, X. Q. The combined effects of size and surface chemistry on the accumulation of boronic acid-rich protein nanoparticles in tumors. Biomaterials 2014, 35, 866–878.

[15]

Wang, X.; Zhen, X.; Wang, J.; Zhang, J. L.; Wu, W.; Jiang, X. Q. Doxorubicin delivery to 3D multicellular spheroids and tumors based on boronic acid-rich chitosan nanoparticles. Biomaterials 2013, 34, 4667–4679.

[16]

Li, Z. Y.; Bin, L.; Yu, L. Z.; Lan, F.; Wu, Y. Intermolecular B–N coordination and multi-interaction synergism induced selective glycoprotein adsorption by phenylboronic acid-functionalized magnetic composites under acidic and neutral conditions. J. Mater. Chem. B 2021, 9, 453–463.

[17]

Lu, R. J.; Zheng, Y. J.; Wang, M. R.; Lin, J. H.; Zhao, Z. Y.; Chen, L.; Zhang, J. H.; Liu, X.; Yin, L. C.; Chen, Y. B. Reactive oxygen species-responsive branched poly (β-amino ester) with robust efficiency for cytosolic protein delivery. Acta Biomater. 2022, 152, 355–366.

[18]

Kennedy, C. R.; Lin, S.; Jacobsen, E. N. The cation–π interaction in small-molecule catalysis. Angew. Chem., Int. Ed. 2016, 55, 12596–12624.

[19]

Sousa da Silva, A. W.; Vranken, W. F. ACPYPE–AnteChamber PYthon parser interfacE. BMC Res. Notes 2012, 5, 367.

[20]

Schauperl, M.; Nerenberg, P. S.; Jang, H.; Wang, L. P.; Bayly, C. I.; Mobley, D. L.; Gilson, M. K. Non-bonded force field model with advanced restrained electrostatic potential charges (RESP2). Commun. Chem. 2020, 3, 44.

[21]

Lu, T.; Chen, F. W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.

[22]

Laskowski, R. A.; Swindells, M. B. LigPlot+: Multiple ligand–protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 2011, 51, 2778–2786.

Nano Research
Pages 7422-7430
Cite this article:
Ban W, Luo Q, Yan C, et al. A boronic acid conjugation integrates antitumor drugs into albumin-binding prodrugs-based nanoparticles with robust efficiency for cancer therapy. Nano Research, 2023, 16(5): 7422-7430. https://doi.org/10.1007/s12274-023-5474-8
Topics:

1125

Views

2

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 23 November 2022
Revised: 27 December 2022
Accepted: 01 January 2023
Published: 27 February 2023
© Tsinghua University Press 2023
Return