AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Multi-componential metal intercalated graphite hybrids synthesized by co-intercalation polymerization towards high-efficient microwave absorptions

Junhua Su1Qinbo Ma1Longkun Que1Hunan Jiang1Xiaoling Xu1,2Yong Wang1,2Yifan Guo1,2,3,4( )Zuowan Zhou1,2,3,5
Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
Yibin Research Institute, Southwest Jiaotong University, Yibin 644000, China
School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China
Research Institute of Frontier Science, Southwest Jiaotong University, Chengdu 610031, China
Show Author Information

Graphical Abstract

We regulated the structures and components of FeNi@expanded graphite (EG) by co-intercalation polymerization and achieved multi-band microwave absorption.

Abstract

Magnetic expanded graphite (EG) hybrids were synthesized by co-intercalation polymerization of aniline together with transition metal ions. Experimental results show that metal ions (Fe, Co, Ni, and Cu) and even their mixtures can co-intercalate into graphite interlayers with flexibly controllable ratios and contents. Among these co-intercalation compounds, Fe/Ni-intercalated graphite with a predesigned mole ratio of 1:3 transforms into NiFe2O4/FeNi3@EG during the annealing process. The synthesized magnetic EG hybrids present multiband microwave absorption in C and X bands due to improved impedance match as well as significantly enhanced interfacial polarization relaxation induced by multi-componential metals. The reflection values of −39.1 dB at 6.95 GHz and −25.7 dB at 9.4 GHz are achieved with an ultra-low loading of 5 wt.%. This work provides a flexible approach for tuning the components and structures of magnetic EG hybrids, which may contribute to the development of microwave absorption materials with superior performances.

Electronic Supplementary Material

Download File(s)
12274_2022_5483_MOESM1_ESM.pdf (1.9 MB)

References

[1]

Zhao, X. X.; Yan, J.; Huang, Y.; Liu, X. D.; Ding, L.; Zong, M.; Liu, P. B.; Li, T. H. Magnetic porous CoNi@C derived from bamboo fiber combined with metal–organic framework for enhanced electromagnetic wave absorption. J. Colloid Interface Sci. 2021, 595, 78–87.

[2]

Xing, J. Y. Electromagnetic radiation on human health hazards and protective measures in modern society. Adv. Mater. Res. 2012, 518–523, 1022–1026.

[3]

Zhou, C. L.; Wang, X. X.; Luo, H.; Deng, L. W.; Wei, S.; Zheng, Y. W.; Jia, Q.; Liu, J. Q. Rapid and direct growth of bipyramid TiO2 from Ti3C2Tx MXene to prepare Ni/TiO2/C heterogeneous composites for high-performance microwave absorption. Chem. Eng. J. 2020, 383, 123095.

[4]

Song, S. W.; Zhang, A. T.; Chen, L.; Jia, Q.; Zhou, C. L.; Liu, J. Q.; Wang, X. X. A novel multi-cavity structured MOF derivative/porous graphene hybrid for high performance microwave absorption. Carbon 2021, 176, 279–289.

[5]

Chen, C. Y.; Pu, N. W.; Liu, Y. M.; Huang, S. Y.; Wu, C. H.; Ger, M. D.; Gong, Y. J.; Chou, Y. C. Remarkable microwave absorption performance of graphene at a very low loading ratio. Compos. Part B: Eng. 2017, 114, 395–403.

[6]

Chen, X.; Jia, X. B.; Wu, Z.; Tang, Z. X.; Zeng, Y. X.; Wang, X. J.; Fu, X. Q.; Zou, Y. H. A graphite-based metamaterial microwave absorber. IEEE Antennas Wireless Propag. Lett. 2019, 18, 1016–1020.

[7]

Zhu, S. Q.; Lei, Z. K.; Liu, Z. H.; Wu, F. Y.; Song, J. L.; Yang, Z.; Tan, G. G.; Man, Q. K.; Liu, X. C. Synthesis and microwave absorption properties of sandwich microstructure Ce2Fe17N3−δ/expanded graphite composites. J. Alloys Compd. 2022, 907, 164445.

[8]

Sun, J.; Li, L. J.; Yu, R.; Ma, X. L.; Jin, S. H.; Chen, K.; Chen, S. S.; Lv, X. J.; Shu, Q. H. Synthesis and microwave absorption properties of sulfur-free expanded graphite/Fe3O4 composites. Molecules 2020, 25, 3044.

[9]

Zhang, X.; Liu, Z. C.; Deng, B. W.; Cai, L.; Dong, Y. Y.; Zhu, X. J.; Lu, W. Honeycomb-like NiCo2O4@MnO2 nanosheets array/3D porous expanded graphite hybrids for high-performance microwave absorber with hydrophobic and flame-retardant functions. Chem. Eng. J. 2021, 419, 129547.

[10]

Yao, Y. Y.; Jin, S. H.; Sun, J.; Li, L. J.; Zou, H. M.; Wen, P.; Lv, G.; Lv, X. J.; Shu, Q. H. Sandwich-like sulfur-free expanded graphite/CoNi hybrids and their synergistic enhancement of microwave absorption. J. Alloys Compd. 2021, 862, 158005.

[11]

Liu, Z. C.; Pan, F.; Deng, B. W.; Xiang, Z.; Lu, W. Self-assembled MoS2/3D worm-like expanded graphite hybrids for high-efficiency microwave absorption. Carbon 2021, 174, 59–69.

[12]

Liu, L.; He, Z. D.; Zhao, Y. T.; Sun, J. C.; Tong, G. X. Modulation of the composition and surface morphology of expanded graphite/Fe/Fe3O4 composites for plasmon resonance-enhanced microwave absorption. J. Alloys Compd. 2018, 765, 1218–1227.

[13]

Quan, L.; Zhang, H. Y.; Wei, H. J.; Li, Y. Q.; Park, S. O.; Hwang, D. Y.; Tian, Y.; Huang, M.; Wang, C. H.; Wang, M. H. et al. The electromagnetic absorption of a Na-ethylenediamine graphite intercalation compound. ACS Appl. Mater. Interfaces 2020, 12, 16841–16848.

[14]

Spanu, L.; Sorella, S.; Galli, G. Nature and strength of interlayer binding in graphite. Phys. Rev. Lett. 2009, 103, 196401.

[15]

Li, Y. Q.; Lu, Y. X.; Adelhelm, P.; Titirici, M. M.; Hu, Y. S. Intercalation chemistry of graphite: Alkali metal ions and beyond. Chem. Soc. Rev. 2019, 48, 4655–4687.

[16]

Li, Z.; Zhang, C. Z.; Han, F.; Zhang, F. Q.; Zhou, D. W.; Xu, S. H.; Liu, H. B.; Li, X. K.; Liu, J. S. Improving the cycle stability of FeCl3-graphite intercalation compounds by polar Fe2O3 trapping in lithium-ion batteries. Nano Res. 2019, 12, 1836–1844.

[17]

Fu, W. J.; Kiggans, J.; Overbury, S. H.; Schwartz, V.; Liang, C. D. Low-temperature exfoliation of multilayer-graphene material from FeCl3 and CH3NO2 co-intercalated graphite compound. Chem. Commun. 2011, 47, 5265–5267.

[18]

Yang, L.; Liu, H. B.; Chen, Y. X.; He, H.; Chen, H. Formation process of FeCl3-NiCl2-graphite intercalation compounds. J. Mater. Eng. Perform. 2012, 21, 339–344.

[19]

Peng, F. X.; Meng, F. B.; Guo, Y. F.; Wang, H. G.; Huang, F.; Zhou, Z. W. Intercalating hybrids of sandwich-like Fe3O4-graphite: Synthesis and their synergistic enhancement of microwave absorption. ACS Sustainable Chem. Eng. 2018, 6, 16744–16753.

[20]

Guo, Y. F.; Li, J. Y.; Meng, F. B.; Wei, W.; Yang, Q.; Li, Y.; Wang, H. G.; Peng, F. X.; Zhou, Z. W. Hybridization-induced polarization of graphene sheets by intercalation-polymerized polyaniline toward high performance of microwave absorption. ACS Appl. Mater. Interfaces 2019, 11, 17100–17107.

[21]

Chen, X. N.; Chen, J. J.; Meng, F. B.; Shan, L. M.; Jiang, M.; Xu, X. L.; Lu, J.; Wang, Y.; Zhou, Z. W. Hierarchical composites of polypyrrole/graphene oxide synthesized by in situ intercalation polymerization for high efficiency and broadband responses of electromagnetic absorption. Compos. Sci. Technol. 2016, 127, 71–78.

[22]

Lalita, S.; Sankar, N. S.; Aparna, R.; Suvigya, K.; Gopinadhan, K. Selective transport of water molecules through interlayer spaces in graphite. Nat. Commun. 2022, 13, 498.

[23]

Liu, T.; Pang, Y.; Xie, X. B.; Qi, W.; Wu, Y.; Kobayashi, S.; Zheng, J.; Li, X. G. Synthesis of microporous Ni/NiO nanoparticles with enhanced microwave absorption properties. J. Alloys Compd. 2016, 667, 287–296.

[24]

Yan, X. D.; Tian, L. H.; Li, K. X.; Atkins, S.; Zhao, H. F.; Murowchick, J.; Liu, L.; Chen, X. B. FeNi3/NiFeOx nanohybrids as highly efficient bifunctional electrocatalysts for overall water splitting. Adv. Mater. Interfaces 2016, 3, 1600368.

[25]

Contreras-Celedón, C. A.; Chacón-García, L.; Lira-Corral, N. J. An efficient synthesis of phenols via oxidative hydroxylation of arylboronic acids using (NH4)2S2O8. J. Chem. 2014, 2014, 569572.

[26]

Qiu, Y. F.; Lu, B.; Yan, Y. Y.; Zhou, J.; Wang, J. Simple and convenient two step synthesis of 5-bromo-2,3-dimethoxy-6-methyl-1,4-benzoquinone. Green Process. Synth. 2019, 8, 825–827.

[27]

Tang, J. S.; Jing, X. B.; Wang, B. C.; Wang, F. S. Infrared spectra of soluble polyaniline. Synth. Metals 1988, 24, 231–238.

[28]

Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S. Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51–87.

[29]

Bourdo, S.; Li, Z. R.; Biris, A. S.; Watanabe, F.; Viswanathan, T.; Pavel, I. Structural, electrical, and thermal behavior of graphite-polyaniline composites with increased crystallinity. Adv. Funct. Mater. 2008, 18, 432–440.

[30]

Chen, X. N.; Meng, F. C.; Zhou, Z. W.; Tian, X.; Shan, L. M.; Zhu, S. B.; Xu, X. L.; Jiang, M.; Wang, L.; Hui, D. et al. One-step synthesis of graphene/polyaniline hybrids by in situ intercalation polymerization and their electromagnetic properties. Nanoscale 2014, 6, 8140–8148.

[31]

Yue, J.; Epstein, A. J. XPS study of self-doped conducting polyaniline and parent systems. Macromolecules 1991, 24, 4441–4445.

[32]

Ryu, K. S.; Kim, K. M.; Kang, S. G.; Lee, G. J.; Joo, J.; Chang, S. H. Electrochemical and physical characterization of lithium ionic salt doped polyaniline as a polymer electrode of lithium secondary battery. Synth. Metals 2000, 110, 213–217.

[33]

Song, H. H.; Zhang, J.; Song, P. F.; Xiong, Y. B. Maize-like ionic liquid@polyaniline nanocomposites for high performance supercapacitor. e-Polymers 2019, 19, 313–322.

[34]

Salvatierra, R. V.; Zitzer, G.; Savu, S. A.; Alves, A. P.; Zarbin, A. J. G.; Chassé, T.; Casu, M. B.; Rocco, M. L. M. Carbon nanotube/polyaniline nanocomposites: Electronic structure, doping level, and morphology investigations. Synth. Metals 2015, 203, 16–21.

[35]

Popova, A. N. Crystallographic analysis of graphite by X-ray diffraction. Coke Chem. 2017, 60, 361–365.

[36]

Pistorius, C. W. F. T. A new quenchable high-temperature polymorph of FeSO4. Naturwissenschaften 1961, 48, 129.

[37]

Poljak, R. J. On the structure of anhydrous nickel sulfate. Acta Cryst. 1958, 11, 306.

[38]

Zhou, J.; Ma, J. F.; Sun, C.; Xie, L. J.; Zhao, Z. Q.; Tian, H.; Wang, Y. G.; Tao, J. T.; Zhu, X. Y. Low-temperature synthesis of NiFe2O4 by a hydrothermal method. J. Am. Ceram. Soc. 2005, 88, 3535–3537.

[39]

Xie, J. L.; Jiang, H. A.; Li, J. Y.; Huang, F.; Zaman, A.; Chen, X. X.; Gao, D.; Guo, Y. F.; Hui, D.; Zhou, Z. W. Improved impedance matching by multi-componential metal-hybridized rGO toward high performance of microwave absorption. Nanotechnol. Rev. 2021, 10, 1–9.

[40]

Ponpandian, N.; Balaya, P.; Narayanasamy, A. Electrical conductivity and dielectric behaviour of nanocrystalline NiFe2O4 spinel. J. Phys.: Condens. Matter 2002, 14, 3221–3237.

[41]

Niaura, G.; Malinauskas, A. Surface-enhanced Raman spectroscopy of ClO4 and SO42− anions adsorbed at a Cu electrode. J. Chem. Soc., Faraday Trans. 1998, 94, 2205–2211.

[42]

Ahlawat, A.; Sathe, V. G. Raman study of NiFe2O4 nanoparticles, bulk, and films: Effect of laser power. J. Raman Spectrosc. 2011, 42, 1087–1094.

[43]

Li, J. H.; Li, J.; Li, M. Preparation of expandable graphite with ultrasound irradiation. Mater. Lett. 2007, 61, 5070–5073.

[44]

Li, W.; Han, C.; Liu, W.; Zhang, M. H.; Tao, K. Y. Expanded graphite applied in the catalytic process as a catalyst support. Catal. Today 2007, 125, 278–281.

[45]

Yadav, R. S.; Kuřitka, I.; Vilcakova, J.; Havlica, J.; Masilko, J.; Kalina, L.; Tkacz, J.; Enev, V.; Hajdúchová, M. Structural, magnetic, dielectric, and electrical properties of NiFe2O4 spinel ferrite nanoparticles prepared by honey-mediated sol-gel combustion. J. Phys. Chem. Solids 2017, 107, 150–161.

[46]

Chen, D.; Zhu, J. W.; Mu, X. Q.; Cheng, R. L.; Li, W. Q.; Liu, S. L.; Pu, Z. H.; Lin, C.; Mu, S. C. Nitrogen-doped carbon coupled FeNi3 intermetallic compound as advanced bifunctional electrocatalyst for OER, ORR, and Zn-air batteries. Appl. Catal. B: Environ. 2020, 268, 118729.

[47]

Gu, Y.; Chen, S.; Ren, J.; Jia, Y. A.; Chen, C. M.; Komarneni, S.; Yang, D. J.; Yao, X. D. Electronic structure tuning in Ni3FeN/r-GO aerogel toward bifunctional electrocatalyst for overall water splitting. ACS Nano 2018, 12, 245–253.

[48]

Ali-Löytty, H.; Louie, M. W.; Singh, M. R.; Li, L.; Casalongue, H. G. S.; Ogasawara, H.; Crumlin, E. J.; Liu, Z.; Bell, A. T.; Nilsson, A. et al. Ambient-pressure XPS study of a Ni-Fe electrocatalyst for the oxygen evolution reaction. J. Phys. Chem. C 2016, 120, 2247–2253.

[49]

Bahgat, M.; Paek, M. K.; Pak, J. J. Reduction kinetics and mechanisms of NiFe2O4 with synthesis of nanocrystalline Fe-Ni alloy. Mater. Trans. 2007, 48, 3132–3139.

[50]

Liu, Z.; Tang, B.; Gu, X. C.; Liu, H.; Feng, L. G. Selective structure transformation for NiFe/NiFe2O4 embedded porous nitrogen-doped carbon nanosphere with improved oxygen evolution reaction activity. Chem. Eng. J. 2020, 395, 125170.

[51]

Sun, L.; Zhang, R.; Wang, Z. D.; Ju, L.; Cao, E. S.; Zhang, Y. J. Structural, dielectric, and magnetic properties of NiFe2O4 prepared via sol-gel auto-combustion method. J. Magn. Magn. Mater. 2017, 421, 65–70.

[52]

Lu, X. G.; Liang, G. Y.; Zhang, Y. M. Synthesis and characterization of magnetic FeNi3 particles obtained by hydrazine reduction in aqueous solution. Mater. Sci. Eng. :B 2007, 139, 124–127.

[53]

Abellán, G.; Prima-García, H.; Coronado, E. Graphene enhances the magnetoresistance of FeNi3 nanoparticles in hierarchical FeNi3-graphene nanocomposites. J. Mater. Chem. C 2016, 4, 2252–2258.

[54]

Lu, X. G.; Liang, G.; Zhang, Y.; Zhang, W. Synthesis of FeNi3/(Ni0.5Zn0.5)Fe2O4 nanocomposite and its high frequency complex permeability. Nanotechnology 2007, 18, 015701.

[55]

Wu, Z. C.; Pei, K.; Xing, L. S.; Yu, X. F.; You, W. B.; Che, R. C. Enhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspended within hierarchically tubular composite. Adv. Funct. Mater. 2019, 29, 1901448.

[56]

Yang, X. F.; Fan, B. X.; Tang, X.; Wang, J. L.; Tong, G. X.; Chen, D. B.; Guan, J. G. Interface modulation of chiral PPy/Fe3O4 planar microhelixes to achieve electric/magnetic-coupling and wide-band microwave absorption. Chem. Eng. J. 2022, 430, 132747.

[57]

Sun, Y. P.; Liu, X. G.; Feng, C.; Fan, J. C.; Lv, Y. H.; Wang, Y. R.; Li, C. T. A facile synthesis of FeNi3@C nanowires for electromagnetic wave absorber. J. Alloys Compd. 2014, 586, 688–692.

[58]

Wu, C.; Wang, H.; Luo, D. H.; Zhou, C. H.; Yan, M. Core–heteroshell FeNi3/NiFe2O4/NiSex via facile one-step selenylation for enhanced electromagnetic performance. J. Alloys Compd. 2021, 856, 157819.

[59]

Golchinvafa, S.; Masoudpanah, S. M. Magnetic and microwave absorption properties of FeNi3/NiFe2O4 composites synthesized by solution combustion method. J. Alloys Compd. 2019, 787, 390–396.

[60]

Peng, F. X.; Dai, M. F.; Wang, Z. Y.; Guo, Y. F.; Zhou, Z. W. Progress in graphene-based magnetic hybrids towards highly efficiency for microwave absorption. J. Mater. Sci. Technol. 2022, 106, 147–161.

[61]

Li, Y.; Xu, Z. K.; Jia, A. L.; Yang, X. L.; Feng, W.; Wang, P.; Li, K.; Lei, W. W.; He, H. Y.; Tian, Y. R. et al. Controllable modification of helical carbon nanotubes for high-performance microwave absorption. Nanotechnol. Rev. 2021, 10, 671–679.

[62]

Kumar, R.; Choudhary, H. K.; Pawar, S. P.; Bose, S.; Sahoo, B. Carbon encapsulated nanoscale iron/iron-carbide/graphite particles for EMI shielding and microwave absorption. Phys. Chem. Chem. Phys. 2017, 19, 23268–23279.

[63]

Shen, Y. Q.; Wei, Y. P.; Ma, J. Q.; Li, Q. L.; Li, J.; Shao, W. J.; Yan, P. Z.; Huang, G. W.; Du, X. Y. Tunable microwave absorption properties of nickel-carbon nanofibers prepared by electrospinning. Ceram. Int. 2019, 45, 3313–3324.

[64]

Wang, B. L.; Fu, Y. G.; Li, J.; Liu, T. Yolk–shelled Co@SiO2@mesoporous carbon microspheres: Construction of multiple heterogeneous interfaces for wide-bandwidth microwave absorption. J. Colloid Interface Sci. 2022, 607, 1540–1550.

[65]

Lv, J.; Cheng, Y.; Liu, W.; Quan, B.; Liang, X. H.; Ji, G. B.; Du, Y. W. Achieving better impedance matching by a sulfurization method through converting Ni into NiS/Ni3S4 composites. J. Mater. Chem. C 2018, 6, 1822–1828.

[66]

Ma, T.; Yuan, M. W.; Islam, S. M.; Li, H. F.; Ma, S. L.; Sun, G. B.; Yang, X. J. FeNi3 alloy nanocrystals grown on graphene: Controllable synthesis, in-depth characterization, and enhanced electromagnetic performance. J. Alloys Compd. 2016, 678, 468–477.

[67]

Rahmati, M.; Masoudpanah, S. M.; Alamolhoda, S.; Barqi, J. High-performance hybrid capacitors based on the FeNi3/NiFe2O4 composite powders synthesized by combustion method. J. Mater. Res. Technol. 2022, 16, 1578–1587.

[68]

Guo, J.; Li, X.; Chen, Z. R.; Zhu, J. F.; Mai, X. M.; Wei, R. B.; Sun, K.; Liu, H.; Chen, Y. X.; Naik, N. et al. Magnetic NiFe2O4/polypyrrole nanocomposites with enhanced electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 108, 64–72.

[69]

Shi, X. F.; You, W. B.; Zhao, Y. H.; Li, X.; Shao, Z. Z.; Che, R. C. Multi-scale magnetic coupling of Fe@SiO2@C–Ni yolk@triple-shell microspheres for broadband microwave absorption. Nanoscale 2019, 11, 17270–17276.

[70]

Dai, B. S.; Li, J. Y.; Wang, W. Z.; Liu, X. G.; Qi, Y. J.; Qi, Y. Carbon fibers with eddy current loss characteristics exhibit different microwave absorption properties in different graphitization states. Mater. Lett. 2020, 281, 128667.

[71]

Li, Q.; Zhang, Z.; Xun, X. C.; Gao, F. F.; Zhao, X.; Kang, Z.; Ding, Y.; Liao, Q. L.; Zhang, Y. Synergistic engineering of dielectric and magnetic losses in M-Co/RGO nanocomposites for use in high-performance microwave absorption. Mater. Chem. Front. 2020, 4, 3013–3021.

[72]

Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. First-principles simulation: Ideas, illustrations, and the CASTEP code. J. Phys.: Condens. Matter 2002, 14, 2717–2744.

[73]

Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.; Joannopoulos, J. D. Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients. Rev. Mod. Phys. 1992, 64, 1045–1097.

[74]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[75]
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. et al. Gaussian 09, Revision D. 01; Gaussian, Inc.: Wallingford, CT, USA, 2013
[76]

Lu, T.; Chen, F. W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.

[77]

Scott, A. P.; Radom, L. Harmonic vibrational frequencies: An evaluation of Hartree–Fock, Møller–Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J. Phys. Chem. 1996, 100, 16502–16513.

Nano Research
Pages 6369-6379
Cite this article:
Su J, Ma Q, Que L, et al. Multi-componential metal intercalated graphite hybrids synthesized by co-intercalation polymerization towards high-efficient microwave absorptions. Nano Research, 2023, 16(5): 6369-6379. https://doi.org/10.1007/s12274-023-5483-7
Topics:

985

Views

10

Crossref

6

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 18 August 2022
Revised: 07 December 2022
Accepted: 09 January 2023
Published: 19 February 2023
© Tsinghua University Press 2023
Return