AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Constructing two-dimensional interfacial ice-like water at room temperature for nanotribology

Yue Hong1Deliang Zhang1Zhiliang Gao1Yuge Zhang1,2Qiang Li1( )Mingdong Dong2( )
Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C DK-8000, Denmark
Show Author Information

Graphical Abstract

Two-dimensional ice-like water layer on hydrophilic surface at room temperature was constructed and its friction property was explored by using environment-controlled scanning probe microscopy.

Abstract

Water/solid interfaces play crucial roles in a wide range of physicochemical and technological processes. However, our microscopic understanding of the interfacial water under ambient temperature is relatively primitive. Herein, we report the direct experimental construction of two-dimensional (2D) ice-like water layer on hydrophilic surface at room temperature by using environment-controlled atomic force microscopy. In contrast to the prevailing view that nanoscale confinement is needed for the formation of 2D ice-like water, we find that 2D ice-like water can form on mica surface at temperatures above the freezing point without confinement. The 2D ice-like water layer shows epitaxial relation with the underlying mica lattice and good thermostability. In addition, the growth of ice-like water layer can be well controlled by the mechanical force from the scanning tip. Furthermore, the friction properties of 2D ice-like water layer are also probed by friction force microscopy. It is found that the ice-like water layer can dramatically reduce the friction. These results provide deep understanding of 2D ice-like water formation on solid surfaces without nanoscale confinement and suggest means of growing 2D ices on surfaces at room temperature.

Electronic Supplementary Material

Download File(s)
12274_2023_5485_MOESM1_ESM.pdf (878.6 KB)

References

[1]

Verdaguer, A.; Sacha, G. M.; Bluhm, H.; Salmeron, M. Molecular structure of water at interfaces: Wetting at the nanometer scale. Chem. Rev. 2006, 106, 1478–1510.

[2]

Ewing, G. E. Ambient thin film water on insulator surfaces. Chem. Rev. 2006, 106, 1511–1526.

[3]

Feibelman, P. J. The first wetting layer on a solid. Phys. Today 2010, 63, 34–39.

[4]

Carrasco, J.; Hodgson, A.; Michaelides, A. A molecular perspective of water at metal interfaces. Nat. Mater. 2012, 11, 667–674.

[5]

Markovic, N. M. Interfacing electrochemistry. Nat. Mater. 2013, 12, 101–102.

[6]

Zilibotti, G.; Corni, S.; Righi, M. C. Load-induced confinement activates diamond lubrication by water. Phys. Rev. Lett. 2013, 111, 146101.

[7]

Martin-Jimenez, D.; Chacon, E.; Tarazona, P.; Garcia, R. Atomically resolved three-dimensional structures of electrolyte aqueous solutions near a solid surface. Nat. Commun. 2016, 7, 12164.

[8]

Umeda, K.; Zivanovic, L.; Kobayashi, K.; Ritala, J.; Kominami, H.; Spijker, P.; Foster, A. S.; Yamada, H. Atomic-resolution three-dimensional hydration structures on a heterogeneously charged surface. Nat. Commun. 2017, 8, 2111.

[9]

Li, Z. B.; Liu, Q.; Zhang, D. L.; Wang, Y.; Zhang, Y. G.; Li, Q.; Dong, M. D. Probing the hydration friction of ionic interfaces at the atomic scale. Nanoscale Horiz. 2022, 7, 368–375.

[10]

Li, Z. B.; Liu, Q.; Li, Q.; Dong, M. D. The role of hydrated anions in hydration lubrication. Nano Res. 2023, 16, 1096–1100.

[11]

Xu, K.; Cao, P. G.; Heath, J. R. Graphene visualizes the first water adlayers on mica at ambient conditions. Science 2010, 329, 1188–1191.

[12]

Song, J.; Li, Q.; Wang, X. F.; Li, J. Y.; Zhang, S.; Kjems, J.; Besenbacher, F.; Dong, M. D. Evidence of Stranski–Krastanov growth at the initial stage of atmospheric water condensation. Nat. Commun. 2014, 5, 4837.

[13]

Zhao, W. H.; Wang, L.; Bai, J.; Yuan, L. F.; Yang, J. L.; Zeng, X. C. Highly confined water: Two-dimensional ice, amorphous ice, and clathrate hydrates. Acc. Chem. Res. 2014, 47, 2505–2513.

[14]

Li, Q.; Song, J.; Besenbacher, F.; Dong, M. D. Two-dimensional material confined water. Acc. Chem. Res. 2015, 48, 119–127.

[15]

Algara-Siller, G.; Lehtinen, O.; Wang, F. C.; Nair, R. R.; Kaiser, U.; Wu, H. A.; Geim, A. K.; Grigorieva, I. V. Square ice in graphene nanocapillaries. Nature 2015, 519, 443–445.

[16]

Hong, Y.; Wang, S. M.; Li, Q.; Song, X.; Wang, Z. G.; Zhang, X.; Besenbacher, F.; Dong, M. D. Interfacial icelike water local doping of graphene. Nanoscale 2019, 11, 19334–19340.

[17]

Shen, Y. R.; Ostroverkhov, V. Sum-frequency vibrational spectroscopy on water interfaces: Polar orientation of water molecules at interfaces. Chem. Rev. 2006, 106, 1140–1154.

[18]

Björneholm, O.; Hansen, M. H.; Hodgson, A.; Liu, L. M.; Limmer, D. T.; Michaelides, A.; Pedevilla, P.; Rossmeisl, J.; Shen, H. Z.; Tocci, G. et al. Water at interfaces. Chem. Rev. 2016, 116, 7698–7726.

[19]

Bian, K.; Gerber, C.; Heinrich, A. J.; Müller, D. J.; Scheuring, S.; Jiang, Y. Scanning probe microscopy. Nat. Rev. Methods Primers 2021, 1, 36.

[20]

Peng, J. B.; Guo, J.; Ma, R. Z.; Jiang, Y. Water–solid interfaces probed by high-resolution atomic force microscopy. Surf. Sci. Rep. 2022, 77, 100549.

[21]

Hu, J.; Xiao, X. D.; Ogletree, D. F.; Salmeron, M. Imaging the condensation and evaporation of molecularly thin films of water with nanometer resolution. Science 1995, 268, 267–269.

[22]

Cao, D. Y.; Song, Y. Z.; Peng, J. B.; Ma, R. Z.; Guo, J.; Chen, J.; Li, X. Z.; Jiang, Y.; Wang, E. G.; Xu, L. M. Advances in atomic force microscopy: Weakly perturbative imaging of the interfacial water. Front. Chem. 2019, 7, 626.

[23]

Fukuma, T.; Ueda, Y.; Yoshioka, S.; Asakawa, H. Atomic-scale distribution of water molecules at the mica–water interface visualized by three-dimensional scanning force microscopy. Phys. Rev. Lett. 2010, 104, 016101.

[24]

Fukuma, T.; Garcia, R. Atomic- and molecular-resolution mapping of solid–liquid interfaces by 3D atomic force microscopy. ACS Nano 2018, 12, 11785–11797.

[25]

Hong, Y.; Li, Q. Recent advances in probing two-dimensional materials confined water by scanning probe microscopy. Chin. Sci. Bull. 2021, 66, 1689–1702.

[26]

Maier, S.; Salmeron, M. How does water wet a surface? Acc. Chem. Res. 2015, 48, 2783–2790.

[27]

Ma, R. Z.; Cao, D. Y.; Zhu, C. Q.; Tian, Y.; Peng, J. B.; Guo, J.; Chen, J.; Li, X. Z.; Francisco, J. S.; Zeng, X. C. et al. Atomic imaging of the edge structure and growth of a two-dimensional hexagonal ice. Nature 2020, 577, 60–63.

[28]

Peng, J. B.; Cao, D. Y.; He, Z. L.; Guo, J.; Hapala, P.; Ma, R. Z.; Cheng, B. W.; Chen, J.; Xie, W. J.; Li, X. Z. et al. The effect of hydration number on the interfacial transport of sodium ions. Nature 2018, 557, 701–705.

[29]

Guo, J.; Lü, J. T.; Feng, Y. X.; Chen, J.; Peng, J. B.; Lin, Z. R.; Meng, X. Z.; Wang, Z. C.; Li, X. Z.; Wang, E. G. et al. Nuclear quantum effects of hydrogen bonds probed by tip-enhanced inelastic electron tunneling. Science 2016, 352, 321–325.

[30]

Yang, P.; Zhang, C.; Sun, W. Y.; Dong, J.; Cao, D. Y.; Guo, J.; Jiang, Y. Robustness of bilayer hexagonal ice against surface symmetry and corrugation. Phys. Rev. Lett. 2022, 129, 046001.

[31]

Piner, R. D.; Mirkin, C. A. Effect of water on lateral force microscopy in air. Langmuir 1997, 13, 6864–6868.

[32]

Zhu, C. Q.; Gao, Y. R.; Zhu, W. D.; Jiang, J.; Liu, J.; Wang, J. J.; Francisco, J. S.; Zeng, X. C. Direct observation of 2-dimensional ices on different surfaces near room temperature without confinement. Proc. Natl. Acad. Sci. USA 2019, 116, 16723–16728.

[33]

Rosenberg, R. Why is ice slippery? Phys. Today 2005, 58, 50–54.

[34]

Wagner, K.; Cheng, P.; Vezenov, D. Noncontact method for calibration of lateral forces in scanning force microscopy. Langmuir 2011, 27, 4635–4644.

[35]

Mullin, N.; Hobbs, J. K. A non-contact, thermal noise based method for the calibration of lateral deflection sensitivity in atomic force microscopy. Rev. Sci. Instrum. 2014, 85, 113703.

[36]

Liu, J.; Zhu, C. Q.; Liu, K.; Jiang, Y. L.; Song, Y.; Francisco, J. S.; Zeng, X. C.; Wang, J. J. Distinct ice patterns on solid surfaces with various wettabilities. Proc. Natl. Acad. Sci. USA 2017, 114, 11285–11290.

[37]

Agarwal, G.; Sowards, L. A.; Naik, R. R.; Stone, M. O. Dip-pen nanolithography in tapping mode. J. Am. Chem. Soc. 2002, 125, 580–583.

[38]

Noy, A.; Sanders, C. H.; Vezenov, D. V.; Wong, S. S.; Lieber, C. M. Chemically-sensitive imaging in tapping mode by chemical force microscopy: Relationship between phase lag and adhesion. Langmuir 1998, 14, 1508–1511.

[39]

Piner, R. D.; Zhu, J.; Xu, F.; Hong, S.; Mirkin, C. A. “Dip-pen” nanolithography. Science 1999, 283, 661–663.

[40]

Bernal, J. D.; Fowler, R. H. A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J. Chem. Phys. 1933, 1, 515–548.

[41]

Odelius, M.; Bernasconi, M.; Parrinello, M. Two dimensional ice adsorbed on mica surface. Phys. Rev. Lett. 1997, 78, 2855–2858.

[42]

Miranda, P. B.; Xu, L.; Shen, Y. R.; Salmeron, M. Icelike water monolayer adsorbed on mica at room temperature. Phys. Rev. Lett. 1998, 81, 5876–5879.

[43]

Canale, L.; Comtet, J.; Niguès, A.; Cohen, C.; Clanet, C.; Siria, A.; Bocquet, L. Nanorheology of interfacial water during ice gliding. Phys. Rev. X 2019, 9, 041025.

[44]

Bonn, D. The physics of ice skating. Nature 2020, 577, 173–174.

[45]

Sotthewes, K.; Bampoulis, P.; Zandvliet, H. J. W.; Lohse, D.; Poelsema, B. Pressure-induced melting of confined ice. ACS Nano 2017, 11, 12723–12731.

Nano Research
Pages 9977-9982
Cite this article:
Hong Y, Zhang D, Gao Z, et al. Constructing two-dimensional interfacial ice-like water at room temperature for nanotribology. Nano Research, 2023, 16(7): 9977-9982. https://doi.org/10.1007/s12274-023-5485-5
Topics:

1612

Views

5

Crossref

5

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 04 October 2022
Revised: 06 January 2023
Accepted: 08 January 2023
Published: 02 March 2023
© Tsinghua University Press 2023
Return