AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Spatially asymmetric cascade nanocatalysts for enhanced chemodynamic therapy

Minchao Liu1,§Hongyue Yu1,§Liang Chen1Tiancong Zhao1Meng Fang2Mengli Liu1Qiaoyu Zhou1Fatemah Farraj AlHarbi3Ahmed Mohamed El-Toni4Fan Zhang1Dongyuan Zhao1Xiaomin Li1( )
Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
Department of Musculoskeletal Cancer Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia

§ Minchao Liu and Hongyue Yu contributed equally to this work.

Show Author Information

Graphical Abstract

A spatially-asymmetric cascade nanocatalyst was developed for enhanced CDT, which is composed by a Fe3O4 head and a closely connected mesoporous silica nanorod immobilized with glucose-oxidase (mSiO2-GOx). Compared with the traditional core@shell structure, the asymmetric cascade catalytic efficiency and tumor suppression rate are greatly increased by 138% and 31%, respectively.

Abstract

Chemodynamic therapy (CDT) based on cascade catalytic nanomedicine has emerged as a promising cancer treatment strategy. However, most of the reported cascade catalytic systems are designed based on symmetric- or co-assembly of multiple catalytic active sites, in which their functions are difficult to perform independently and may interfere with each other. Especially in cascade catalytic system that involves fragile natural-enzymes, the strong oxidation of free-radicals toward natural-enzymes should be carefully considered, and the spatial distribution of the multiple catalytic active sites should be carefully organized to avoid the degradation of the enzyme catalytic activity. Herein, a spatially-asymmetric cascade nanocatalyst is developed for enhanced CDT, which is composed by a Fe3O4 head and a closely connected mesoporous silica nanorod immobilized with glucose oxidase (mSiO2-GOx). The mSiO2-GOx subunit could effectively deplete glucose in tumor cells, and meanwhile produce a considerable amount of H2O2 for subsequent Fenton reaction under the catalysis of Fe3O4 subunit in the tumor microenvironment. Taking the advantage of the spatial isolation of mSiO2-GOx and Fe3O4 subunits, the catalysis of GOx and free-radicals generation occur at different domains of the asymmetric nanocomposite, minimizing the strong oxidation of free-radicals toward the activity of GOx at the other side. In addition, direct exposure of Fe3O4 subunit without any shelter could further enhance the strong oxidation of free-radicals toward objectives. So, compared with traditional core@shell structure, the long-term stability and efficiency of the asymmetric cascade catalytic for CDT is greatly increased by 138%, thus realizing improved cancer cell killing and tumor restrain efficiency.

Electronic Supplementary Material

Download File(s)
12274_2023_5486_MOESM1_ESM.pdf (2.3 MB)

References

[1]

Lin, H.; Chen, Y.; Shi, J. L. Nanoparticle-triggered in situ catalytic chemical reactions for tumour-specific therapy. Chem. Soc. Rev. 2018, 47, 1938–1958.

[2]

Fan, Y.; Liu, S. E.; Yi, Y.; Rong, H. P.; Zhang, J. T. Catalytic nanomaterials toward atomic levels for biomedical applications: From metal clusters to single-atom catalysts. ACS Nano 2021, 15, 2005–2037.

[3]

Tong, Z. R.; Gao, Y.; Yang, H.; Wang, W. L.; Mao, Z. W. Nanomaterials for cascade promoted catalytic cancer therapy. View 2021, 2, 20200133.

[4]

Ding, Y.; Xu, H.; Xu, C.; Tong, Z. R.; Zhang, S. T.; Bai, Y.; Chen, Y. N.; Xu, Q. H.; Zhou, L. Z.; Ding, H. et al. A nanomedicine fabricated from gold nanoparticles-decorated metal-organic framework for cascade chemo/chemodynamic cancer therapy. Adv Sci. 2020, 7, 2001060.

[5]

Chen, W. T.; Ding, S. S.; Wu, J. R.; Shi, G. Y.; Zhu, A. W. In situ detection of hydroxyl radicals in mitochondrial oxidative stress with a nanopipette electrode. Chem. Commun. 2020, 56, 13225–13228.

[6]

Sang, Y. J.; Li, W.; Liu, H.; Zhang, L.; Wang, H.; Liu, Z. W.; Ren, J. S.; Qu, X. G. Construction of nanozyme-hydrogel for enhanced capture and elimination of bacteria. Adv. Funct. Mater. 2019, 29, 1900518.

[7]

Pryor, W. A. Oxy-radicals and related species: Their formation, lifetimes, and reactions. Annu. Rev. Physiol. 1986, 48, 657–667.

[8]

Hatz, S.; Lambert, J. D. C.; Ogilby, P. R. Measuring the lifetime of singlet oxygen in a single cell: Addressing the issue of cell viability. Photochem. Photobiol. Sci. 2007, 6, 1106–1116.

[9]

Srinivas, U. S.; Tan, B. W. Q.; Vellayappan, B. A.; Jeyasekharan, A. D. ROS and the DNA damage response in cancer. Redox Biol. 2019, 25, 101084.

[10]

Halliwell, B.; Adhikary, A.; Dingfelder, M.; Dizdaroglu, M. Hydroxyl radical is a significant player in oxidative DNA damage in vivo. Chem. Soc. Rev. 2021, 50, 8355–8360.

[11]

Yan, L. L.; Zaher, H. S. How do cells cope with RNA damage and its consequences? J. Biol. Chem. 2019, 294, 15158–15171.

[12]

Fei, W. D.; Chen, D. F.; Tang, H. X.; Li, C. Q.; Zheng, W. Z.; Chen, F. Y.; Song, Q. Q.; Zhao, Y. C.; Zou, Y.; Zheng, C. H. Targeted GSH-exhausting and hydroxyl radical self-producing manganese-silica nanomissiles for MRI guided ferroptotic cancer therapy. Nanoscale 2020, 12, 16738–16754.

[13]

Song, C.; Ouyang, Z. J.; Gao, Y.; Guo, H. H.; Wang, S. J.; Wang, D. Y.; Xia, J. D.; Shen, M. W.; Shi, X. Y. Modular design of multifunctional core-shell tecto dendrimers complexed with copper(II) for MR imaging-guided chemodynamic therapy of orthotopic glioma. Nano Today 2021, 41, 101325.

[14]

Guptasarma, P.; Balasubramanian, D.; Matsugo, S.; Saito, I. Hydroxyl radical mediated damage to proteins, with special reference to the crystallins. Biochemistry 1992, 31, 4296–4303.

[15]

Circu, M. L.; Aw, T. Y. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic. Biol. Med. 2010, 48, 749–762.

[16]

Cadet, J.; Davies, K. J. A.; Medeiros, M. H. G.; Di Mascio, P.; Wagner, J. R. Formation and repair of oxidatively generated damage in cellular DNA. Free Radic. Biol. Med. 2017, 107, 13–34.

[17]

Zhang, L.; Wan, S. S.; Li, C. X.; Xu, L.; Cheng, H.; Zhang, X. Z. An adenosine triphosphate-responsive autocatalytic Fenton nanoparticle for tumor ablation with self-supplied H2O2 and acceleration of Fe(III)/Fe(II) conversion. Nano Lett. 2018, 18, 7609–7618.

[18]

Zhang, S. C.; Cao, C. Y.; Lv, X. Y.; Dai, H. M.; Zhong, Z. H.; Liang, C.; Wang, W. J.; Huang, W.; Song, X. J.; Dong, X. C. A H2O2 Self-sufficient nanoplatform with domino effects for thermal-responsive enhanced chemodynamic therapy. Chem. Sci. 2020, 11, 1926–1934.

[19]

Tang, Z.; Liu, Y.; He, M.; Bu, W. Chemodynamic therapy: tumour microenvironment-mediated Fenton and Fenton-like reactions. Angew. Chem. Int. Ed. 2019, 58, 946–956.

[20]

Chen, Q.; Feng, L. Z.; Liu, J. J.; Zhu, W. W.; Dong, Z. L.; Wu, Y. F.; Liu, Z. Intelligent albumin-MnO2 nanoparticles as pH-/H2O2-responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy. Adv. Mater. 2016, 28, 7129–7136.

[21]

Szatrowski, T. P.; Nathan, C. F. Production of large amounts of hydrogen peroxide by human tumor Cells. Cancer Res. 1991, 51, 794–798.

[22]

Wang, M.; Wang, D. M.; Chen, Q.; Li, C. X.; Li, Z. Q.; Lin, J. Recent advances in glucose-oxidase-based nanocomposites for tumor therapy. Small 2019, 15, 1903895.

[23]

Fu, L. H.; Qi, C.; Hu, Y. R.; Lin, J.; Huang, P. Glucose oxidase-instructed multimodal synergistic cancer therapy. Adv. Mater. 2019, 31, 1808325.

[24]

Chang, M. Y.; Wang, M.; Wang, M. F.; Shu, M. M.; Ding, B. B.; Li, C. X.; Pang, M. L.; Cui, S. Z.; Hou, Z. Y.; Lin, J. A multifunctional cascade bioreactor based on hollow-structured Cu2MoS4 for synergetic cancer chemo-dynamic therapy/starvation therapy/phototherapy/immunotherapy with remarkably enhanced efficacy. Adv. Mater. 2019, 31, 1905271.

[25]

Wang, T. T.; Zhang, H.; Liu, H. H.; Yuan, Q.; Ren, F.; Han, Y. B.; Sun, Q.; Li, Z.; Gao, M. Y. Boosting H2O2-guided chemodynamic therapy of cancer by enhancing reaction kinetics through versatile biomimetic Fenton nanocatalysts and the second near-infrared light irradiation. Adv. Funct. Mater. 2020, 30, 1906128.

[26]

Fu, L. H.; Hu, Y. R.; Qi, C.; He, T.; Jiang, S. S.; Jiang, C.; He, J.; Qu, J. L.; Lin, J.; Huang, P. Biodegradable manganese-doped calcium phosphate nanotheranostics for traceable cascade reaction-enhanced anti-tumor therapy. ACS Nano 2019, 13, 13985–13994.

[27]

Wang, C. H.; Yang, J. X.; Dong, C. Y.; Shi, S. Glucose oxidase-related cancer therapies. Adv. Therap. 2020, 3, 2000110.

[28]

Huo, M. F.; Wang, L. Y.; Chen, Y.; Shi, J. L. Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat. Commun. 2017, 8, 357.

[29]

Feng, W.; Han, X. G.; Wang, R. Y.; Gao, X.; Hu, P.; Yue, W. W.; Chen, Y.; Shi, J. L. Nanocatalysts-augmented and photothermal-enhanced tumor-specific sequential nanocatalytic therapy in both NIR-I and NIR-II biowindows. Adv. Mater. 2019, 31, 1805919.

[30]

Chang, K. W.; Liu, Z. H.; Fang, X. F.; Chen, H. B.; Men, X. J.; Yuan, Y.; Sun, K.; Zhang, X. J.; Yuan, Z.; Wu, C. F. Enhanced phototherapy by nanoparticle-enzyme via generation and photolysis of hydrogen peroxide. Nano Lett. 2017, 17, 4323–4329.

[31]

Feng, L. L.; Xie, R.; Wang, C. Q.; Gai, S. L.; He, F.; Yang, D.; Yang, P. P.; Lin, J. Magnetic targeting, tumor microenvironment-responsive intelligent nanocatalysts for enhanced tumor ablation. ACS Nano 2018, 12, 11000–11012.

[32]

Yang, X.; Yang, Y.; Gao, F.; Wei, J. J.; Qian, C. G.; Sun, M. J. Biomimetic hybrid nanozymes with self-supplied H+ and accelerated O2 generation for enhanced starvation and photodynamic therapy against hypoxic tumors. Nano Lett. 2019, 19, 4334–4342.

[33]

Zhao, T. C.; Zhu, X. H.; Hung, C. T.; Wang, P. Y.; Elzatahry, A.; Al-Khalaf, A. A.; Hozzein, W. N.; Zhang, F.; Li, X. M.; Zhao, D. Y. Spatial isolation of carbon and silica in a single Janus mesoporous nanoparticle with tunable amphiphilicity. J. Am. Chem. Soc. 2018, 140, 10009–10015.

[34]

Zhang, L.; Zhang, F.; Dong, W. F.; Song, J. F.; Huo, Q. S.; Sun, H. B. Magnetic-mesoporous Janus nanoparticles. Chem. Commun. 2011, 47, 1225–1227.

[35]

Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

[36]

Liu, J.; Sun, Z. K.; Deng, Y. H.; Zou, Y.; Li, C. Y.; Guo, X. H.; Xiong, L. Q.; Gao, Y.; Li, F. Y.; Zhao, D. Y. Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. Angew. Chem., Int. Ed. 2009, 48, 5875–5879.

[37]

Zhao, T. C.; Chen, L.; Wang, P. Y.; Li, B. H.; Lin, R. F.; Al-Khalaf, A. A.; Hozzein, W. N.; Zhang, F.; Li, X. M.; Zhao, D. Y. Surface-kinetics mediated mesoporous multipods for enhanced bacterial adhesion and inhibition. Nat. Commun. 2019, 10, 4387.

[38]

Yu, Z. Z.; Zhou, P.; Pan, W.; Li, N.; Tang, B. A biomimetic nanoreactor for synergistic chemiexcited photodynamic therapy and starvation therapy against tumor metastasis. Nat. Commun. 2018, 9, 5044.

[39]

Sun, X. L.; Guo, S. J.; Chung, C. S.; Zhu, W. L.; Sun, S. H. A sensitive H2O2 assay based on dumbbell-like PtPd-Fe3O4 nanoparticles. Adv. Mater. 2013, 25, 132–136.

[40]

Gao, S. S.; Lin, H.; Zhang, H. X.; Yao, H. L.; Chen, Y.; Shi, J. L. Nanocatalytic tumor therapy by biomimetic dual inorganic nanozyme-catalyzed cascade reaction. Adv. Sci. 2019, 6, 1801733.

[41]

Nascimento, R. A. S.; Özel, R. E.; Mak, W. H.; Mulato, M.; Singaram, B.; Pourmand, N. Single cell “glucose nanosensor” verifies elevated glucose levels in individual cancer cells. Nano Lett. 2016, 16, 1194–1200.

[42]

Chen, Q. Q.; Yang, D. Y.; Yu, L. D.; Jing, X. X.; Chen, Y. Catalytic chemistry of iron-free Fenton nanocatalysts for versatile radical nanotherapeutics. Mater. Horiz. 2020, 7, 317–337.

[43]

Chen, J.; Wang, X. B.; Liu, Y. B.; Liu, H. L.; Gao, F. L.; Lan, C.; Yang, B. C.; Zhang, S. R.; Gao, Y. J. pH-responsive catalytic mesocrystals for chemodynamic therapy via ultrasound-assisted Fenton reaction. Chem. Eng. J. 2019, 369, 394–402.

[44]

Fu, L. H.; Qi, C.; Lin, J.; Huang, P. Catalytic chemistry of glucose oxidase in cancer diagnosis and treatment. Chem. Soc. Rev. 2018, 47, 6454–6472.

[45]

Lei, S.; Zhang, J.; Blum, N. T.; Li, M.; Zhang, D. Y.; Yin, W. M.; Zhao, F.; Lin, J.; Huang, P. In vivo three-dimensional multispectral photoacoustic imaging of dual enzyme-driven cyclic cascade reaction for tumor catalytic therapy. Nat. Commun. 2022, 13, 1298.

[46]

Wu, H. A.; Liu, L.; Song, L. N.; Ma, M.; Gu, N.; Zhang, Y. Enhanced tumor synergistic therapy by injectable magnetic hydrogel mediated generation of hyperthermia and highly toxic reactive oxygen species. ACS Nano 2019, 13, 14013–14023.

Nano Research
Pages 9642-9650
Cite this article:
Liu M, Yu H, Chen L, et al. Spatially asymmetric cascade nanocatalysts for enhanced chemodynamic therapy. Nano Research, 2023, 16(7): 9642-9650. https://doi.org/10.1007/s12274-023-5486-4
Topics:

1321

Views

14

Crossref

13

Web of Science

14

Scopus

0

CSCD

Altmetrics

Received: 12 October 2022
Revised: 02 January 2023
Accepted: 09 January 2023
Published: 06 February 2023
© Tsinghua University Press 2023
Return