AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Polyoxovanadate ionic crystals with open tunnels stabilized by macrocations for lithium-ion storage

Jie WangLin WangCongyan LiuYan WangFei YeWen YanBo Liu( )
School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
Show Author Information

Graphical Abstract

We present a polyoxovanadate ionic crystal with open tunnels stabilized by macrocations as an advanced electrode in lithium-ion battery (LIB). This LIB features long cycle stability, high capacitance-dominated capacity, and reversible structural changes.

Abstract

Polyoxometalates (POMs) with multiple redox active sites have been reported as charge sponge for lithium-ion batteries (LIBs). Herein, we for the first time introduce a polyoxovanadate (POV) ionic crystals with macrocations, [Ni(Phen)3][ClV14O34]Cl (NiV14, Phen = 1,10-phenanthroline), as an anode material for LIBs. The existence of macrocation [Ni(Phen)3]2+ stabilizes the open tunnels inside NiV14. The NiV14 electrode exhibits superior rate capabilities (1083 mAh·g−1 at 100 mA·g−1 and 384 mAh·g−1 at 2000 mA·g−1) due to the rapid capacitive dominated contribution and high Li+ ions diffusion coefficients (3.3 × 10−12 cm−2·s−1), and it delivers a remarkable cycling stability with a Coulombic efficiency of 99.7% after 1000 cycles at 2000 mA·g−1. Such performance can be attributed to the stable structure of NiV14 and the highly reversible valence changes of vanadium during the charge/discharge processes, which are revealed by a combination of in situ X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and X-ray absorption fine structure (XAFS) measurements. This work not only demonstrates that NiV14 with open tunnels stabilized by macrocation is a promising anode material for high performance LIBs, but also provides important references for the rational design of POMs electrode materials in advanced energy storage systems.

Electronic Supplementary Material

Download File(s)
12274_2023_5491_MOESM1_ESM.pdf (1.1 MB)

References

[1]

Liu, Y. Y.; Zhu, Y. Y.; Cui, Y. Challenges and opportunities towards fast-charging battery materials. Nat. Energy 2019, 47, 540–550.

[2]

Liu, S. Q.; Wang, B. Y.; Zhang, X.; Zhao, S.; Zhang, Z. H.; Yu, H. J. Reviving the lithium-manganese-based layered oxide cathodes for lithium-ion batteries. Matter 2021, 4, 1511–1527.

[3]

Duffner, F.; Kronemeyer, N.; Tübke, J.; Leker, J.; Winter, M.; Schmuch, R. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat. Energy 2021, 6, 123–134.

[4]

Weiss, M.; Ruess, R.; Kasnatscheew, J.; Levartovsky, Y.; Levy, N. R.; Minnmann, P.; Stolz, L.; Waldmann, T.; Wohlfahrt-Mehrens, M.; Aurbach, D. et al. Fast charging of lithium-ion batteries: A review of materials aspects. Adv. Energy Mater. 2021, 11, 2101126.

[5]

Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.

[6]

Zhao, Y.; Li, X. F.; Yan, B.; Xiong, D. B.; Li, D. J.; Lawes, S.; Sun, X. L. Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv. Energy Mater. 2016, 6, 1502175.

[7]

Liu, S. Q.; Zhang, X.; Yan, P. F.; Cheng, R. F.; Tang, Y. S.; Cui, M.; Wang, B. Y.; Zhang, L. Q.; Wang, X. H.; Jiang, Y. Y. et al. Dual bond enhanced multidimensional constructed composite silicon anode for high-performance lithium ion batteries. ACS Nano 2019, 13, 8854–8864.

[8]

Anjass, M.; Lowe, G. A.; Streb, C. Molecular vanadium oxides for energy conversion and energy storage: Current trends and emerging opportunities. Angew. Chem., Int. Ed. 2021, 60, 7522–7532.

[9]

Yang, L.; Lei, J.; Fan, J. M.; Yuan, R. M.; Zheng, M. S.; Chen, J. J.; Dong, Q. F. The intrinsic charge carrier behaviors and applications of polyoxometalate clusters based materials. Adv. Mater. 2021, 33, 2005019.

[10]

Liu, J. L.; Chen, Z.; Chen, S.; Zhang, B. W.; Wang, J.; Wang, H. H.; Tian, B. B.; Chen, M. H.; Fan, X. F.; Huang, Y. Z. et al. “Electron/ion sponge”-like V-based polyoxometalate: Toward high-performance cathode for rechargeable sodium ion batteries. ACS Nano 2017, 11, 6911–6920.

[11]

Ji, Y. C.; Huang, L. J.; Hu, J.; Streb, C.; Song, Y. F. Polyoxometalate-functionalized nanocarbon materials for energy conversion, energy storage and sensor systems. Energy Environ. Sci. 2015, 8, 776–789.

[12]

Chen, J. J.; Symes, M. D.; Fan, S. C.; Zheng, M. S.; Miras, H. N.; Dong, Q. F.; Cronin, L. High-performance polyoxometalate-based cathode materials for rechargeable lithium-ion batteries. Adv. Mater. 2015, 27, 4649–4654.

[13]

Nishimoto, Y.; Yokogawa, D.; Yoshikawa, H.; Awaga, K.; Irle, S. Super-reduced polyoxometalates: Excellent molecular cluster battery components and semipermeable molecular capacitors. J. Am. Chem. Soc. 2014, 136, 9042–9052.

[14]

Chen, X. X.; Wang, Z.; Zhang, R. R.; Xu, L. Q.; Sun, D. A novel polyoxometalate-based hybrid containing a 2D [CoMo8O26] structure as the anode for lithium-ion batteries. Chem. Commun. 2017, 53, 10560–10563.

[15]

Huang, S. C.; Lin, C. C.; Hu, C. W.; Liao, Y. F.; Chen, T. Y.; Chen, H. Y. Vanadium-based polyoxometalate as electron/ion sponge for lithium-ion storage. J. Power Sources 2019, 435, 226702.

[16]

Lin, C. C.; Hsu, C. T.; Liu, W.; Huang, S. C.; Lin, M. H.; Kortz, U.; Mougharbel, A. S.; Chen, T. Y.; Hu, C. W.; Lee, J. F. et al. In operando X-ray studies of high-performance lithium-ion storage in Keplerate-type polyoxometalate anodes. ACS Appl. Mater. Interfaces 2020, 12, 40296–40309.

[17]

Shimoyama, Y.; Uchida, S. Structure–function relationships of porous ionic crystals (PICs) based on polyoxometalate anions and oxo-centered trinuclear metal carboxylates as counter cations. Chem. Lett. 2021, 50, 21–30.

[18]

Uchida, S.; Mizuno, N. Design and syntheses of nano-structured ionic crystals with selective sorption properties. Coord. Chem. Rev. 2007, 251, 2537–2546.

[19]

Iqbal, B.; Jia, X. Y.; Hu, H. B.; He, L.; Chen, W.; Song, Y. F. Fabrication of redox-active polyoxometalate-based ionic crystals onto single-walled carbon nanotubes as high-performance anode materials for lithium-ion batteries. Inorg. Chem. Front. 2020, 7, 1420–1427.

[20]

Wang, Y.; Liu, C. Y.; Wang, Y.; Zhu, C. F.; Chen, X. H.; Liu, B. Efficient photo-thermo-electric conversion using polyoxovanadate in ionic liquid for low-grade heat utilization. ChemSusChem 2021, 14, 5434–5441.

[21]

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Wei, F.; Zhang, J. G.; Zhang, Q. A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 2016, 3, 1500213.

[22]

Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364–5457.

[23]

Huang, Q.; Wei, T.; Zhang, M.; Dong, L. Z.; Zhang, A. M.; Li, S. L.; Liu, W. J.; Liu, J.; Lan, Y. Q. A highly stable polyoxometalate-based metal-organic framework with π-π stacking for enhancing lithium ion battery performance. J. Mater. Chem. A 2017, 5, 8477–8483.

[24]

Yang, K.; Hu, Y. Y.; Li, L. Y.; Cui, L. L.; He, L.; Wang, S. J.; Zhao, J. W.; Song, Y. F. First high-nuclearity mixed-valence polyoxometalate with hierarchical interconnected Zn2+ migration channels as an advanced cathode material in aqueous zinc-ion battery. Nano Energy 2020, 74, 104851.

[25]

Wang, Y. Y.; Zhang, M.; Li, S. L.; Zhang, S. R.; Xie, W.; Qin, J. S.; Su, Z. M.; Lan, Y. Q. Diamondoid-structured polymolybdate-based metal-organic frameworks as high-capacity anodes for lithium-ion batteries. Chem. Commun. 2017, 53, 5204–5207.

[26]

Sun, K.; Li, H. Q.; Ye, H. J.; Jiang, F. Q.; Zhu, H.; Yin, J. 3D-structured polyoxometalate microcrystals with enhanced rate capability and cycle stability for lithium-ion storage. ACS Appl. Mater. Interfaces 2018, 10, 18657–18664.

[27]

Rui, X. H.; Yesibolati, N.; Li, S. R.; Yuan, C. C.; Chen, C. H. Determination of the chemical diffusion coefficient of Li+ in intercalation-type Li3V2(PO4)3 anode material. Solid State Ionics 2011, 187, 58–63.

[28]

Liu, Q.; Liu, Y. D.; Sun, C. J.; Li, Z. F.; Ren, Y.; Lu, W. Q.; Stach, E. A.; Xie, J. The structural evolution of V2O5 nanocystals during electrochemical cycling studied using in operando synchrotron techniques. Electrochim. Acta 2014, 136, 318–322.

[29]

Liu, Q.; Li, Z. F.; Liu, Y. D.; Zhang, H. Y.; Ren, Y.; Sun, C. J.; Lu, W. Q.; Zhou, Y.; Stanciu, L.; Stach, E. A. et al. Graphene-modified nanostructured vanadium pentoxide hybrids with extraordinary electrochemical performance for Li-ion batteries. Nat. Commun. 2015, 6, 6127.

[30]

Uematsu, S.; Quan, Z.; Suganuma, Y.; Sonoyama, N. Reversible lithium charge–discharge property of bi-capped Keggin-type polyoxovanadates. J. Power Sources 2012, 217, 13–20.

Nano Research
Pages 9267-9272
Cite this article:
Wang J, Wang L, Liu C, et al. Polyoxovanadate ionic crystals with open tunnels stabilized by macrocations for lithium-ion storage. Nano Research, 2023, 16(7): 9267-9272. https://doi.org/10.1007/s12274-023-5491-7
Topics:

986

Views

10

Crossref

7

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 07 November 2022
Revised: 29 December 2022
Accepted: 08 January 2023
Published: 16 March 2023
© Tsinghua University Press 2023
Return