Graphical Abstract

Polyoxometalates (POMs) with multiple redox active sites have been reported as charge sponge for lithium-ion batteries (LIBs). Herein, we for the first time introduce a polyoxovanadate (POV) ionic crystals with macrocations, [Ni(Phen)3][ClV14O34]Cl (NiV14, Phen = 1,10-phenanthroline), as an anode material for LIBs. The existence of macrocation [Ni(Phen)3]2+ stabilizes the open tunnels inside NiV14. The NiV14 electrode exhibits superior rate capabilities (1083 mAh·g−1 at 100 mA·g−1 and 384 mAh·g−1 at 2000 mA·g−1) due to the rapid capacitive dominated contribution and high Li+ ions diffusion coefficients (3.3 × 10−12 cm−2·s−1), and it delivers a remarkable cycling stability with a Coulombic efficiency of 99.7% after 1000 cycles at 2000 mA·g−1. Such performance can be attributed to the stable structure of NiV14 and the highly reversible valence changes of vanadium during the charge/discharge processes, which are revealed by a combination of in situ X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and X-ray absorption fine structure (XAFS) measurements. This work not only demonstrates that NiV14 with open tunnels stabilized by macrocation is a promising anode material for high performance LIBs, but also provides important references for the rational design of POMs electrode materials in advanced energy storage systems.
Liu, Y. Y.; Zhu, Y. Y.; Cui, Y. Challenges and opportunities towards fast-charging battery materials. Nat. Energy 2019, 47, 540–550.
Liu, S. Q.; Wang, B. Y.; Zhang, X.; Zhao, S.; Zhang, Z. H.; Yu, H. J. Reviving the lithium-manganese-based layered oxide cathodes for lithium-ion batteries. Matter 2021, 4, 1511–1527.
Duffner, F.; Kronemeyer, N.; Tübke, J.; Leker, J.; Winter, M.; Schmuch, R. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat. Energy 2021, 6, 123–134.
Weiss, M.; Ruess, R.; Kasnatscheew, J.; Levartovsky, Y.; Levy, N. R.; Minnmann, P.; Stolz, L.; Waldmann, T.; Wohlfahrt-Mehrens, M.; Aurbach, D. et al. Fast charging of lithium-ion batteries: A review of materials aspects. Adv. Energy Mater. 2021, 11, 2101126.
Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.
Zhao, Y.; Li, X. F.; Yan, B.; Xiong, D. B.; Li, D. J.; Lawes, S.; Sun, X. L. Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv. Energy Mater. 2016, 6, 1502175.
Liu, S. Q.; Zhang, X.; Yan, P. F.; Cheng, R. F.; Tang, Y. S.; Cui, M.; Wang, B. Y.; Zhang, L. Q.; Wang, X. H.; Jiang, Y. Y. et al. Dual bond enhanced multidimensional constructed composite silicon anode for high-performance lithium ion batteries. ACS Nano 2019, 13, 8854–8864.
Anjass, M.; Lowe, G. A.; Streb, C. Molecular vanadium oxides for energy conversion and energy storage: Current trends and emerging opportunities. Angew. Chem., Int. Ed. 2021, 60, 7522–7532.
Yang, L.; Lei, J.; Fan, J. M.; Yuan, R. M.; Zheng, M. S.; Chen, J. J.; Dong, Q. F. The intrinsic charge carrier behaviors and applications of polyoxometalate clusters based materials. Adv. Mater. 2021, 33, 2005019.
Liu, J. L.; Chen, Z.; Chen, S.; Zhang, B. W.; Wang, J.; Wang, H. H.; Tian, B. B.; Chen, M. H.; Fan, X. F.; Huang, Y. Z. et al. “Electron/ion sponge”-like V-based polyoxometalate: Toward high-performance cathode for rechargeable sodium ion batteries. ACS Nano 2017, 11, 6911–6920.
Ji, Y. C.; Huang, L. J.; Hu, J.; Streb, C.; Song, Y. F. Polyoxometalate-functionalized nanocarbon materials for energy conversion, energy storage and sensor systems. Energy Environ. Sci. 2015, 8, 776–789.
Chen, J. J.; Symes, M. D.; Fan, S. C.; Zheng, M. S.; Miras, H. N.; Dong, Q. F.; Cronin, L. High-performance polyoxometalate-based cathode materials for rechargeable lithium-ion batteries. Adv. Mater. 2015, 27, 4649–4654.
Nishimoto, Y.; Yokogawa, D.; Yoshikawa, H.; Awaga, K.; Irle, S. Super-reduced polyoxometalates: Excellent molecular cluster battery components and semipermeable molecular capacitors. J. Am. Chem. Soc. 2014, 136, 9042–9052.
Chen, X. X.; Wang, Z.; Zhang, R. R.; Xu, L. Q.; Sun, D. A novel polyoxometalate-based hybrid containing a 2D [CoMo8O26]∞ structure as the anode for lithium-ion batteries. Chem. Commun. 2017, 53, 10560–10563.
Huang, S. C.; Lin, C. C.; Hu, C. W.; Liao, Y. F.; Chen, T. Y.; Chen, H. Y. Vanadium-based polyoxometalate as electron/ion sponge for lithium-ion storage. J. Power Sources 2019, 435, 226702.
Lin, C. C.; Hsu, C. T.; Liu, W.; Huang, S. C.; Lin, M. H.; Kortz, U.; Mougharbel, A. S.; Chen, T. Y.; Hu, C. W.; Lee, J. F. et al. In operando X-ray studies of high-performance lithium-ion storage in Keplerate-type polyoxometalate anodes. ACS Appl. Mater. Interfaces 2020, 12, 40296–40309.
Shimoyama, Y.; Uchida, S. Structure–function relationships of porous ionic crystals (PICs) based on polyoxometalate anions and oxo-centered trinuclear metal carboxylates as counter cations. Chem. Lett. 2021, 50, 21–30.
Uchida, S.; Mizuno, N. Design and syntheses of nano-structured ionic crystals with selective sorption properties. Coord. Chem. Rev. 2007, 251, 2537–2546.
Iqbal, B.; Jia, X. Y.; Hu, H. B.; He, L.; Chen, W.; Song, Y. F. Fabrication of redox-active polyoxometalate-based ionic crystals onto single-walled carbon nanotubes as high-performance anode materials for lithium-ion batteries. Inorg. Chem. Front. 2020, 7, 1420–1427.
Wang, Y.; Liu, C. Y.; Wang, Y.; Zhu, C. F.; Chen, X. H.; Liu, B. Efficient photo-thermo-electric conversion using polyoxovanadate in ionic liquid for low-grade heat utilization. ChemSusChem 2021, 14, 5434–5441.
Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Wei, F.; Zhang, J. G.; Zhang, Q. A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 2016, 3, 1500213.
Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364–5457.
Huang, Q.; Wei, T.; Zhang, M.; Dong, L. Z.; Zhang, A. M.; Li, S. L.; Liu, W. J.; Liu, J.; Lan, Y. Q. A highly stable polyoxometalate-based metal-organic framework with π-π stacking for enhancing lithium ion battery performance. J. Mater. Chem. A 2017, 5, 8477–8483.
Yang, K.; Hu, Y. Y.; Li, L. Y.; Cui, L. L.; He, L.; Wang, S. J.; Zhao, J. W.; Song, Y. F. First high-nuclearity mixed-valence polyoxometalate with hierarchical interconnected Zn2+ migration channels as an advanced cathode material in aqueous zinc-ion battery. Nano Energy 2020, 74, 104851.
Wang, Y. Y.; Zhang, M.; Li, S. L.; Zhang, S. R.; Xie, W.; Qin, J. S.; Su, Z. M.; Lan, Y. Q. Diamondoid-structured polymolybdate-based metal-organic frameworks as high-capacity anodes for lithium-ion batteries. Chem. Commun. 2017, 53, 5204–5207.
Sun, K.; Li, H. Q.; Ye, H. J.; Jiang, F. Q.; Zhu, H.; Yin, J. 3D-structured polyoxometalate microcrystals with enhanced rate capability and cycle stability for lithium-ion storage. ACS Appl. Mater. Interfaces 2018, 10, 18657–18664.
Rui, X. H.; Yesibolati, N.; Li, S. R.; Yuan, C. C.; Chen, C. H. Determination of the chemical diffusion coefficient of Li+ in intercalation-type Li3V2(PO4)3 anode material. Solid State Ionics 2011, 187, 58–63.
Liu, Q.; Liu, Y. D.; Sun, C. J.; Li, Z. F.; Ren, Y.; Lu, W. Q.; Stach, E. A.; Xie, J. The structural evolution of V2O5 nanocystals during electrochemical cycling studied using in operando synchrotron techniques. Electrochim. Acta 2014, 136, 318–322.
Liu, Q.; Li, Z. F.; Liu, Y. D.; Zhang, H. Y.; Ren, Y.; Sun, C. J.; Lu, W. Q.; Zhou, Y.; Stanciu, L.; Stach, E. A. et al. Graphene-modified nanostructured vanadium pentoxide hybrids with extraordinary electrochemical performance for Li-ion batteries. Nat. Commun. 2015, 6, 6127.
Uematsu, S.; Quan, Z.; Suganuma, Y.; Sonoyama, N. Reversible lithium charge–discharge property of bi-capped Keggin-type polyoxovanadates. J. Power Sources 2012, 217, 13–20.