Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
To validate the crystal structure and elucidate the formation mechanism of the unexpected surface copper boride, a systematic scanning tunneling microscope, X-ray photoelectron spectroscopy, angle-resolved photoemission spectroscopy, and aberration-corrected scanning transmission electron microscopy investigations were conducted to confirm the structure of copper-rich boride Cu8B14 after depositing boron on single-crystal Cu(111) surface under ultrahigh vacuum. First-principles calculations with defective surface models further indicate that boron atoms tend to react with Cu atoms near terrace edges or defects, which in turn shapes the intermediate structures of copper boride and leads to the formation of stable Cu-B monolayer via large-scale surface reconstruction eventually.
Piazza, Z. A.; Hu, H. S.; Li, W. L.; Zhao, Y. F.; Li, J.; Wang, L. S. Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nat. Commun. 2014, 5, 3113.
Mannix, A. J.; Zhou, X. F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X. L.; Fisher, B. L.; Santiago, U.; Guest, J. R. et al. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 2015, 350, 1513–1516.
Feng, B. J.; Zhang, J.; Zhong, Q.; Li, W. B.; Li, S.; Li, H.; Cheng, P.; Meng, S.; Chen, L.; Wu, K. H. Experimental realization of two-dimensional boron sheets. Nat. Chem. 2016, 8, 563–568.
Liu, X. L.; Zhang, Z. H.; Wang, L. Q.; Yakobson, B. I.; Hersam, M. C. Intermixing and periodic self-assembly of borophene line defects. Nat. Mater. 2018, 17, 783–788.
Wu, R. T.; Drozdov, I. K.; Eltinge, S.; Zahl, P.; Ismail-Beigi, S.; Božović, I.; Gozar, A. Large-area single-crystal sheets of borophene on Cu(111) surfaces. Nat. Nanotechnol. 2019, 14, 44–49.
Kiraly, B.; Liu, X. L.; Wang, L. Q.; Zhang, Z. H.; Mannix, A. J.; Fisher, B. L.; Yakobson, B. I.; Hersam, M. C.; Guisinger, N. P. Borophene synthesis on Au(111). ACS Nano 2019, 13, 3816–3822.
Wang, Y.; Kong, L. J.; Chen, C. Y.; Cheng, P. J.; Feng, B. J.; Wu, K. H.; Chen, L. Realization of regular-mixed quasi-1D borophene chains with long-range order. Adv. Mater. 2020, 32, 2005128.
Li, Q. C.; Kolluru, V. S. C.; Rahn, M. S.; Schwenker, E.; Li, S. W.; Hennig, R. G.; Darancet, P.; Chan, M. K. Y.; Hersam, M. C. Synthesis of borophane polymorphs through hydrogenation of borophene. Science 2021, 371, 1143–1148.
Liu, X. L.; Li, Q. C.; Ruan, Q. Y.; Rahn, M. S.; Yakobson, B. I.; Hersam, M. C. Borophene synthesis beyond the single-atomic-layer limit. Nat. Mater. 2022, 21, 35–40.
Zhong, Q.; Kong, L. J.; Gou, J.; Li, W. B.; Sheng, S. X.; Yang, S.; Cheng, P.; Li, H.; Wu, K. H.; Chen, L. Synthesis of borophene nanoribbons on Ag(110) surface. Phys. Rev. Mater. 2017, 1, 021001(R).
Wu, R. T.; Eltinge, S.; Drozdov, I. K.; Gozar, A.; Zahl, P.; Sadowski, J. T.; Ismail-Beigi, S.; Božović, I. Micrometre-scale single-crystalline borophene on a square-lattice Cu(100) surface. Nat. Chem. 2022, 14, 377–383.
Chen, C. Y.; Lv, H. F.; Zhang, P.; Zhuo, Z. W.; Wang, Y.; Ma, C.; Li, W. B.; Wang, X. G.; Feng, B. J.; Cheng, P. et al. Synthesis of bilayer borophene. Nat. Chem. 2022, 14, 25–31.
Tang, H.; Ismail-Beigi, S. Novel precursors for boron nanotubes: The competition of two-center and three-center bonding in boron sheets. Phys. Rev. Lett. 2007, 99, 115501.
Penev, E. S.; Bhowmick, S.; Sadrzadeh, A.; Yakobson, B. I. Polymorphism of two-dimensional boron. Nano Lett. 2012, 12, 2441–2445.
Zhou, X. F.; Dong, X.; Oganov, A. R.; Zhu, Q.; Tian, Y. J.; Wang, H. T. Semimetallic two-dimensional boron allotrope with massless Dirac fermions. Phys. Rev. Lett. 2014, 112, 085502.
Zhang, Z. H.; Yang, Y.; Gao, G. Y.; Yakobson, B. I. Two-dimensional boron monolayers mediated by metal substrates. Angew. Chem. 2015, 127, 13214–13218.
Zhou, X. F.; Oganov, A. R.; Wang, Z. H.; Popov, I. A.; Boldyrev, A. I.; Wang, H. T. Two-dimensional magnetic boron. Phys. Rev. B 2016, 93, 085406.
Penev, E. S.; Kutana, A.; Yakobson, B. I. Can two-dimensional boron superconduct? Nano Lett. 2016, 16, 2522–2526.
Xu, S. G.; Li, X. T.; Zhao, Y. J.; Liao, J. H.; Xu, W. P.; Yang, X. B.; Xu, H. Two-dimensional semiconducting boron monolayers. J. Am. Chem. Soc. 2017, 139, 17233–17236.
Zhu, M. H.; Weng, X. J.; Gao, G. Y.; Dong, S.; Lin, L. F.; Wang, W. H.; Zhu, Q.; Oganov, A. R.; Dong, X.; Tian, Y. J. et al. Magnetic borophenes from an evolutionary search. Phys. Rev. B 2019, 99, 205412.
Yue, C. G.; Weng, X. J.; Gao, G. Y.; Oganov, A. R.; Dong, X.; Shao, X.; Wang, X. M.; Sun, J.; Xu, B.; Wang, H. T. et al. Formation of copper boride on Cu(111). Fundam. Res. 2021, 1, 482–487.
Tsujikawa, Y.; Horio, M.; Zhang, X. N.; Senoo, T.; Nakashima, T.; Ando, Y.; Ozaki, T.; Mochizuki, I.; Wada, K.; Hyodo, T. et al. Structural and electronic evidence of boron atomic chains. Phys. Rev. B 2022, 106, 205406.
Tong, Y. F.; Bouaziz, M.; Zhang, W.; Obeid, B.; Loncle, A.; Oughaddou, H.; Enriquez, H.; Chaouchi, K.; Esaulov, V.; Chen, Z. S. et al. Evidence of new 2D material: Cu2Te. 2D Mater. 2020, 7, 035010.
Zhang, Z. H.; Mannix, A. J.; Liu, X. L.; Hu, Z. L.; Guisinger, N. P.; Hersam, M. C.; Yakobson, B. I. Near-equilibrium growth from borophene edges on silver. Sci. Adv. 2019, 5, eaax0246.
Küchle, J. T.; Baklanov, A.; Seitsonen, A. P.; Ryan, P. T. P.; Feulner, P.; Pendem, P.; Lee, T. L.; Muntwiler, M.; Schwarz, M.; Haag, F. et al. Silicene’s pervasive surface alloy on Ag(111): A scaffold for two-dimensional growth. 2D Mater. 2022, 9, 045021.
Jia, J. J.; Zhang, H. J.; Wang, Z. X.; Zhao, J. X.; Zhou, Z. A Cu2B2 monolayer with planar hypercoordinate motifs: An efficient catalyst for CO electroreduction to ethanol. J. Mater. Chem. A 2020, 8, 9607–9615.
Weng, X. J.; He, X. L.; Hou, J. Y.; Hao, C. M.; Dong, X.; Gao, G. Y.; Tian, Y. J.; Xu, B.; Zhou, X. F. First-principles prediction of two-dimensional copper borides. Phys. Rev. Mater. 2020, 4, 074010.
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Tersoff, J.; Hamann, D. R. Theory of the scanning tunneling microscope. Phys. Rev. B 1985, 31, 805–813.
Chen, M. X.; Weinert, M. Layer k-projection and unfolding electronic bands at interfaces. Phys. Rev. B 2018, 98, 245421.
Oganov, A. R.; Glass, C. W. Crystal structure prediction using ab initio evolutionary techniques: Principles and applications. J. Chem. Phys. 2006, 124, 244704.
Zhu, Q.; Li, L.; Oganov, A. R.; Allen, P. B. Evolutionary method for predicting surface reconstructions with variable stoichiometry. Phys. Rev. B 2013, 87, 195317.
Zhou, X. F.; Oganov, A. R.; Shao, X.; Zhu, Q.; Wang, H. T. Unexpected reconstruction of the α-boron(111) surface. Phys. Rev. Lett. 2014, 113, 176101.