AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A confined growth strategy to construct 3DOM SiO2 nanoreactor in-situ embedded Co3O4 nanoparticles catalyst for the catalytic combustion of VOCs: Superior H2O and SO2 resistance

Weigao Han1,2,§Shilin Wu4,§Fang Dong1,3( )Weiliang Han1Yinghao Chu4Linghui Su4Zhicheng Tang1( )
State Key Laboratory for Oxo Synthesis and Selective Oxidation, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
University of Chinese Academy of Sciences, Beijing 100049, China
Dalian National Laboratory for Clean Energy, Dalian 116023, China
College of Architecture and Environment, Sichuan University, Chengdu 610000, China

§ Weigao Han and Shilin Wu contributed equally to this work.

Show Author Information

Graphical Abstract

A novel strategy was proposed to construct a confined Co3O4@SiO2 nanoreactor, which could achieve the encapsulation of Co3O4 nanoparticles in the channels of three-dimensionally ordered macroporous and mesoporous (3DOM) SiO2 support. It was discovered that the confined 3DOM Co3O4@SiO2 nanoreactor showed superior H2O and SO2 resistances for the benzene catalytic combustion.

Abstract

SO2 poisoning is a common problem in the catalytic combustion of volatile organic compounds (VOCs). In this work, we took three-dimensionally ordered macroporous and mesoporous (3DOM) SiO2 as the nanoreactor to protect active sites from SO2 erosion in the catalytic combustion of benzene. Simultaneously, the confined growth of metal active nanoparticles in the multi-stage pore is also full of challenges. And we successfully confined Co3O4 nanoparticles (NPs) in macroporous and mesoporous channels. Interestingly, the precursors’ growth in the pore was controlled and nanoreactors with different pore sizes were prepared by adjusting the loading amount and preparation methods. It is discovered that the Co3O4 NPs confined in 3DOM SiO2 nanoreactor showed superior sulfur and water resistance. Density functional theory (DFT) calculations verified that the Co-Si catalyst had high SO2 adsorption energy (−0.48 eV), which illustrated that SO2 was hard to attach to the surface of the Co-Si catalyst. The SiO2 nanoreactor had low SO2 adsorption energy (−5.15 eV), which indicated that SO2 was easily absorbed on SiO2 nanoreactor. This illustrated that the SiO2 nanoreactor could protect effectively active sites from SO2 erosion.

Electronic Supplementary Material

Download File(s)
12274_2023_5498_MOESM1_ESM.pdf (540.2 KB)

References

[1]

Guo, Y. L.; Wen, M. C.; Li, G.; An, T. C. Recent advances in VOC elimination by catalytic oxidation technology onto various nanoparticles catalysts: A critical review. Appl. Catal. B: Environ. 2021, 281, 119447.

[2]

Azalim, S.; Brahmi, R.; Agunaou, M.; Beaurain, A.; Giraudon, J. M.; Lamonier, J. F. Washcoating of cordierite honeycomb with Ce-Zr-Mn mixed oxides for VOC catalytic oxidation. Chem. Eng. J. 2013, 223, 536–546.

[3]

Zha, K. W.; Sun, W. J.; Huang, Z.; Xu, H. L.; Shen, W. Insights into high performance monolith catalysts of Co3O4 nanowires grown on nickel foam with abundant oxygen vacancies for formaldehyde oxidation. ACS Catal. 2020, 10, 12127–12138.

[4]

Song, C. Y.; Zhang, D. M.; Wang, B.; Cai, Z.; Yan, P.; Sun, Y.; Ye, K.; Cao, D. X.; Cheng, K.; Wang, G. L. Uniformly grown PtCo-modified Co3O4 nanosheets as a highly efficient catalyst for sodium borohydride electrooxidation. Nano Res. 2016, 9, 3322–3333.

[5]

Chen, C. Y.; Chen, F.; Zhang, L.; Pan, S. X.; Bian, C. Q.; Zheng, X. M.; Meng, X. J.; Xiao, F. S. Importance of platinum particle size for complete oxidation of toluene over Pt/ZSM-5 catalysts. Chem. Commun. 2015, 51, 5936–5938.

[6]

Santos, V. P.; Pereira, M. F. R.; Órfão, J. J. M.; Figueiredo, J. L. The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds. Appl. Catal. B: Environ. 2010, 99, 353–363.

[7]

Rodríguez, M. L.; Cadús, L. E.; Borio, D. O. VOCs abatement in adiabatic monolithic reactors: Heat effects, transport limitations and design considerations. Chem. Eng. J. 2016, 306, 86–98.

[8]

Liotta, L. F.; Wu, H. J.; Pantaleo, G.; Venezia, A. M. Co3O4 nanocrystals and Co3O4-MOx binary oxides for CO, CH4 and VOC oxidation at low temperatures: A review. Catal. Sci. Technol. 2013, 3, 3085–3102.

[9]

Ma, Y.; Wang, L.; Ma, J. Z.; Wang, H. H.; Zhang, C. B.; Deng, H.; He, H. Investigation into the enhanced catalytic oxidation of o-xylene over MOF-derived Co3O4 with different shapes: The role of surface twofold-coordinate lattice oxygen (O 2f). ACS Catal. 2021, 11, 6614–6625.

[10]

Yan, Q. Y.; Li, X. Y.; Zhao, Q. D.; Chen, G. H. Shape-controlled fabrication of the porous Co3O4 nanoflower clusters for efficient catalytic oxidation of gaseous toluene. J. Hazard. Mater. 2012, 209–210, 385–391.

[11]

Zhang, C.; Cao, Y. J.; Wang, Z. T.; Tang, M. Y.; Wang, Y.; Tang, S. W.; Chen, Y. F.; Tang, W. X. Insights into the sintering resistance of sphere-like Mn2O3 in catalytic toluene oxidation: Effect of manganese salt precursor and crucial role of residual trace sulfur. Ind. Eng. Chem. Res. 2022, 61, 6414–6426.

[12]

Lu, J. C.; Liu, J. P.; Zhao, Y. T.; He, D. D.; Han, C. Y.; He, S. F.; Luo, Y. M. The identification of active chromium species to enhance catalytic behaviors of alumina-based catalysts for sulfur-containing VOC abatement. J. Hazard. Mater. 2020, 384, 121289.

[13]

Hou, Z. Q.; Dai, L. Y.; Liu, Y. X.; Deng, J. G.; Jing, L.; Pei, W. B.; Gao, R. Y.; Feng, Y.; Dai, H. X. Highly efficient and enhanced sulfur resistance supported bimetallic single-atom palladium-cobalt catalysts for benzene oxidation. Appl. Catal. B: Environ. 2021, 285, 119844.

[14]

Sun, F.; Gao, J. H.; Liu, X.; Yang, Y. Q.; Wu, S. H. Controllable nitrogen introduction into porous carbon with porosity retaining for investigating nitrogen doping effect on SO2 adsorption. Chem. Eng. J. 2016, 290, 116–124.

[15]

Liu, B.; Liu, J.; Xin, L.; Zhang, T.; Xu, Y. B.; Jiang, F.; Liu, X. H. Unraveling reactivity descriptors and structure sensitivity in low-temperature NH3-SCR reaction over CeTiOx catalysts: A combined computational and experimental study. ACS Catal. 2021, 11, 7613–7636.

[16]

Venezia, A. M.; Di Carlo, G.; Liotta, L. F.; Pantaleo, G.; Kantcheva, M. Effect of Ti(IV) loading on CH4 oxidation activity and SO2 tolerance of Pd catalysts supported on silica SBA-15 and HMS. Appl. Catal. B: Environ. 2011, 106, 529–539.

[17]

Venezia, A. M.; Di Carlo, G.; Pantaleo, G.; Liotta, L.; Melaet, G.; Kruse, N. Oxidation of CH4 over Pd supported on TiO2-doped SiO2: Effect of Ti(IV) loading and influence of SO2. Appl. Catal. B: Environ. 2009, 88, 430–437.

[18]

Huo, J. W.; Yuan, C.; Wang, Y. Nanocomposites of three-dimensionally ordered porous TiO2 decorated with Pt and reduced graphene oxide for the visible-light photocatalytic degradation of waterborne pollutants. ACS Appl. Nano Mater. 2019, 2, 2713–2724.

[19]

Pei, W. B.; Dai, L. Y.; Liu, Y. X.; Deng, J. G.; Jing, L.; Zhang, K. F.; Hou, Z. Q.; Han, Z.; Rastegarpanah, A.; Dai, H. X. PtRu nanoparticles partially embedded in the 3DOM Ce0.7Zr0.3O2 skeleton: Active and stable catalysts for toluene combustion. J. Catal. 2020, 385, 274–288.

[20]

Wang, X. M.; Wang, Y. N.; Feng, L.; Liu, P. G.; Zhang, X. A novel adsorbent based on functionalized three-dimensionally ordered macroporous cross-linked polystyrene for removal of salicylic acid from aqueous solution. Chem. Eng. J. 2012, 203, 251–258.

[21]

Pei, W. B.; Liu, Y. X.; Deng, J. G.; Zhang, K. F.; Hou, Z. Q.; Zhao, X. T.; Dai, H. X. Partially embedding Pt nanoparticles in the skeleton of 3DOM Mn2O3: An effective strategy for enhancing catalytic stability in toluene combustion. Appl. Catal. B: Environ. 2019, 56, 117814.

[22]

Ji, K. M.; Dai, H. X.; Deng, J. G.; Jiang, H. Y.; Zhang, L.; Zhang, H.; Cao, Y. J. Catalytic removal of toluene over three-dimensionally ordered macroporous Eu1−xSrxFeO3. Chem. Eng. J. 2013, 214, 262–271.

[23]

Deng, M. J.; Ho, P. J.; Song, C. Z.; Chen, S. A.; Lee, J. F.; Chen, J. M.; Lu, K. T. Fabrication of Mn/Mn oxide core–shell electrodes with three-dimensionally ordered macroporous structures for high-capacitance supercapacitors. Energy Environ. Sci. 2013, 6, 2178–2185.

[24]

Xie, S. H.; Liu, Y. X.; Deng, J. G.; Zhao, X. T.; Yang, J.; Zhang, K. F.; Han, Z.; Dai, H. X. Three-dimensionally ordered macroporous CeO2-supported Pd@Co nanoparticles: Highly active catalysts for methane oxidation. J. Catal. 2016, 342, 17–26.

[25]

Yu, X. H.; Wang, L. Y.; Chen, M. Z.; Fan, X. Q.; Zhao, Z.; Cheng, K.; Chen, Y. S.; Sojka, Z.; Wei, Y. C.; Liu, J. Enhanced activity and sulfur resistance for soot combustion on three-dimensionally ordered macroporous-mesoporous MnxCe1−xOδ/SiO2 catalysts. Appl. Catal. B: Environ. 2019, 254, 246–259.

[26]

Li, Y. L.; Yang, S. Y.; Peng, H. G.; Liu, W. M.; Mi, Y. Y.; Wang, Z.; Tang, C. J.; Wu, D. S.; An, T. C. Insight into the activity and SO2 tolerance of hierarchically ordered MnFe1−δCoδOx ternary oxides for low-temperature selective catalytic reduction of NOx with NH3. J. Catal. 2021, 395, 195–209.

[27]

Wei, Y. C.; Zhang, P.; Xiong, J.; Yu, Q.; Wu, Q. Q.; Zhao, Z.; Liu, J. SO2-tolerant catalytic removal of soot particles over 3D ordered macroporous Al2O3-supported binary Pt-Co oxide catalysts. Environ. Sci. Technol. 2020, 54, 6947–6956.

[28]

Zha, K. W.; Wu, S. P.; Zheng, Z. H.; Huang, Z.; Xu, H. L.; Shen, W. Insights into boosting SO2 tolerance for catalytic oxidation of propane over Fe2O3-promoted Co3O4/halloysite catalysts. Ind. Eng. Chem. Res. 2022, 61, 12482–12492.

[29]

Shang, Z.; Sun, M.; Chang, S. M.; Che, X.; Cao, X. M.; Wang, L.; Guo, Y.; Zhan, W. C.; Guo, Y. L.; Lu, G. Z. Activity and stability of Co3O4-based catalysts for soot oxidation: The enhanced effect of Bi2O3 on activation and transfer of oxygen. Appl. Catal. B: Environ. 2017, 209, 33–44.

[30]
Wang, X. Y.; Wen, W.; Mi, J. X.; Li, X. X.; Wang, R. H. The ordered mesoporous transition metal oxides for selective catalytic reduction of NOx at low temperature. Appl. Catal. B: Environ. 2015, 176–177, 454–463.
[31]

Sanlés-Sobrido, M.; Pérez-Lorenzo, M.; Rodríguez-González, B.; Salgueiriño, V.; Correa-Duarte, M. A. Highly active nanoreactors: Nanomaterial encapsulation based on confined catalysis. Angew. Chem., Int. Ed. 2012, 51, 3877–3882.

[32]

Koo, J. H.; Lee, S. W.; Park, J. Y.; Lee, I. S. Nanospace-confined high-temperature solid-state reactions: Versatile synthetic route for high-diversity pool of catalytic nanocrystals. Chem. Mater. 2017, 29, 9463–9471.

[33]

Castillejos, E.; Debouttière, P. J.; Roiban, L.; Solhy, A.; Martinez, V.; Kihn, Y.; Ersen, O.; Philippot, K.; Chaudret, B.; Serp, P. An efficient strategy to drive nanoparticles into carbon nanotubes and the remarkable effect of confinement on their catalytic performance. Angew. Chem., Int. Ed. 2009, 48, 2529–2533.

[34]

Wu, Q. P.; Yao, Z. G.; Zhou, X. J.; Xu, J.; Cao, F. H.; Li, C. L. Built-in catalysis in confined nanoreactors for high-loading Li-S batteries. ACS Nano 2020, 14, 3365–3377.

[35]

Shi, H.; Eckstein, S.; Vjunov, A.; Camaioni, D. M.; Lercher, J. A. Tailoring nanoscopic confines to maximize catalytic activity of hydronium ions. Nat. Commun. 2017, 8, 15442.

[36]

Tian, P. L.; Shen, K.; Chen, J. Y.; Fan, T.; Fang, R. Q.; Li, Y. W. Self-templated formation of Pt@ZIF-8/SiO2 composite with 3D-ordered macropores and size-selective catalytic properties. Small Methods 2018, 2, 1800219.

[37]

Arandiyan, H.; Dai, H. X.; Ji, K. M.; Sun, H. Y.; Li, J. H. Pt nanoparticles embedded in colloidal crystal template derived 3D ordered macroporous Ce0.6Zr0.3Y0.1O2: Highly efficient catalysts for methane combustion. ACS Catal. 2015, 5, 1781–1793.

[38]

Wang, Y.; Arandiyan, H.; Scott, J.; Akia, M.; Dai, H. X.; Deng, J. G.; Aguey-Zinsou, K. F.; Amal, R. High performance Au-Pd supported on 3D hybrid strontium-substituted lanthanum manganite perovskite catalyst for methane combustion. ACS Catal. 2016, 6, 6935–6947.

[39]

Wu, Q. Q.; Jing, M. Z.; Wei, Y. C.; Zhao, Z.; Zhang, X. D.; Xiong, J.; Liu, J.; Song, W. Y.; Li, J. M. High-efficient catalysts of core–shell structured Pt@transition metal oxides (TMOs) supported on 3DOM-Al2O3 for soot oxidation: The effect of strong Pt-TMO interaction. Appl. Catal. B: Environ. 2019, 244, 628–640.

[40]

Han, W. G.; Dong, F.; Han, W. L.; Tang, Z. C. A strategy to construct uniform MOFs/PAN nanowire derived bead-like Co3O4 for VOC catalytic combustion. Chem. Commun. 2020, 56, 14307–14310.

[41]

Han, W. G.; Dong, F.; Han, W. L.; Yao, J. F.; Meng, Y.; Tang, Z. C. A new strategy for designing highly efficient Co3O4 catalyst with the molecular space configurations for toluene catalytic combustion. Chem. Eng. J. 2022, 435, 134953.

[42]

Yu, X. H.; Zhao, Z.; Wei, Y. C.; Liu, J. Ordered micro/macro porous K-OMS-2/SiO2 nanocatalysts: Facile synthesis, low cost and high catalytic activity for diesel soot combustion. Sci. Rep. 2017, 7, 43894.

[43]

Li, H. Y.; Wang, R. G.; Hu, H. L.; Liu, W. B. Surface modification of self-healing poly(urea-formaldehyde) microcapsules using silane-coupling agent. Appl. Surf. Sci. 2008, 255, 1894–1900.

[44]

Mallakpour, S.; Madani, M. The effect of the coupling agents KH550 and KH570 on the nanostructure and interfacial interaction of zinc oxide/chiral poly(amide-imide) nanocomposites containing L-leucine amino acid moieties. J. Mater. Sci. 2014, 49, 5112–5118.

[45]

Wen, M.; Dong, F.; Yao, J. F.; Tang, Z. C.; Zhang, J. Y. Pt nanoparticles confined in the ordered mesoporous CeO2 as a highly efficient catalyst for the elimination of VOCs. J. Catal. 2022, 412, 42–58.

[46]

Dong, Y. L.; Zhan, X. L.; Niu, X. Y.; Li, J.; Yuan, F. L.; Zhu, Y. J.; Fu, H. G. Facile synthesis of Co-SBA-16 mesoporous molecular sieves with EISA method and their applications for hydroxylation of benzene. Micropor. Mesopor. Mat. 2014, 185, 97–106.

[47]

Shi, L. H.; Chen, J. G.; Fang, K. G.; Sun, Y. H. CH3-modified Co/Ru/SiO2 catalysts and the performances for Fischer–Tropsch synthesis. Fuel 2008, 87, 521–526.

[48]

Abuzalat, O.; Wong, D.; Parka, S. S.; Kim, S. Highly selective and sensitive fluorescent zeolitic imidazole frameworks sensor for nitroaromatic explosive detection. Nanoscale 2020, 12, 13523–13530.

[49]

Cao, J. H.; Lei, C. J.; Yang, J.; Cheng, X. D.; Li, Z. J.; Yang, B.; Zhang, X. W.; Lei, L. C.; Hou, Y.; Ostrikov, K. An ultrathin cobalt-based zeolitic imidazolate framework nanosheet array with a strong synergistic effect towards the efficient oxygen evolution reaction. J. Mater. Chem. A 2018, 6, 18877–18883.

[50]

Cai, J.; Jiang, F.; Liu, X. H. Exploring pretreatment effects in Co/SiO2 Fischer–Tropsch catalysts: Different oxidizing gases applied to oxidation–reduction process. Appl. Catal. B: Environ. 2017, 210, 1–13.

[51]

Cai, T.; Huang, H.; Deng, W.; Dai, Q. G.; Liu, W.; Wang, X. Y. Catalytic combustion of 1,2-dichlorobenzene at low temperature over Mn-modified Co3O4 catalysts. Appl. Catal. B: Environ. 2015, 166–167, 393–405.

[52]

Dong, F.; Zhao, Y. S.; Han, W. L.; Zhao, H. J.; Lu, G. X.; Tang, Z. C. Co nanoparticles anchoring three dimensional graphene lattice as bifunctional catalyst for low-temperature CO oxidation. Mol. Catal. 2017, 439, 118–127.

[53]

Zhao, W. T.; Zhang, Y. Y.; Wu, X. W.; Zhan, Y. Y.; Wang, X. Y.; Au, C. T.; Jiang, L. L. Synthesis of Co-Mn oxides with double-shelled nanocages for low-temperature toluene combustion. Catal. Sci. Technol. 2018, 8, 4494–4502.

[54]

Fei, Z. Y.; Cheng, C.; Chen, H. W.; Li, L.; Yang, Y. R.; Liu, Q.; Chen, X.; Zhang, Z. X.; Tang, J. H.; Cui, M. F. et al. Construction of uniform nanodots CeO2 stabilized by porous silica matrix for 1,2-dichloroethane catalytic combustion. Chem. Eng. J. 2019, 370, 916–924.

[55]

Zong, L. Y.; Zhang, G. D.; Zhao, J. H.; Dong, F.; Zhang, J. Y.; Tang, Z. C. Morphology-controlled synthesis of 3D flower-like TiO2 and the superior performance for selective catalytic reduction of NOx with NH3. Chem. Eng. J. 2018, 343, 500–511.

[56]

Xie, R. Y.; Ma, L.; Li, Z. H.; Qu, Z.; Yan, N. Q.; Li, J. H. Review of sulfur promotion effects on metal oxide catalysts for NOx emission control. ACS Catal. 2021, 11, 13119–13139.

[57]

Waikar, J.; More, P. Oxygen deficient Ce doped CO supported on alumina catalyst for low-temperature CO oxidation in presence of H2O and SO2. Fuel 2023, 331, 125880.

[58]

Chong Y. N.; Chen T. Y.; Li, Y. F.; Lin J. J.; Huang, W. H.; Chen, C. L.; Jin X. J.; Fu M. L.; Zhao Y.; Chen G. X. et al. Quenching-induced defect-rich platinum/metal oxide catalysts promote catalytic oxidation. Environ. Sci. Technol. 2023, 57, 5831–5840.

[59]

Kim, J. M.; Vikrant, K.; Kim, T.; Kim, K. H.; Dong, F. Thermocatalytic oxidation of gaseous benzene by a titanium dioxide supported platinum catalyst. Chem. Eng. J. 2022, 428, 131090.

[60]

Wang, Y.; Wu, J.; Wang, G.; Yang, D. Y.; Ishihara, T.; Guo, L. M. Oxygen vacancy engineering in Fe doped akhtenskite-type MnO2 for low-temperature toluene oxidation. Appl. Catal. B: Environ. 2021, 285, 119873.

[61]

Wang, X. Y.; Liu, Y.; Zhang, T. H.; Luo, Y. J.; Lan, Z. X.; Zhang, K.; Zuo, J. C.; Jiang, L. L.; Wang, R. H. Geometrical-site-dependent catalytic activity of ordered mesoporous Co-based spinel for benzene oxidation: In situ DRIFTS study coupled with Raman and XAFS spectroscopy. ACS Catal. 2017, 7, 1626–1636.

[62]

Yang, K.; Liu, Y. X.; Deng, J. G.; Zhao, X. T.; Yang, J.; Han, Z.; Hou, Z. Q.; Dai, H. X. Three-dimensionally ordered mesoporous iron oxide-supported single-atom platinum: Highly active catalysts for benzene combustion. Appl. Catal. B: Environ. 2019, 244, 650–659.

[63]

Wan, X.; Wang, L.; Gao, S.; Lang, X. Y.; Wang, L. X.; Zhang, T.; Dong, A. Q.; Wang, W. C. Low-temperature removal of aromatics pollutants via surface labile oxygen over Mn-based mullite catalyst SmMn2O5. Chem. Eng. J. 2021, 410, 128305.

[64]

Yang, W. H.; Su, Z.; Xu, Z. H.; Yang, W. N.; Peng, Y.; Li, J. H. Comparative study of α-, β-, γ- and δ-MnO2 on toluene oxidation: Oxygen vacancies and reaction intermediates. Appl. Catal. B: Environ. 2020, 260, 118150.

Nano Research
Pages 207-220
Cite this article:
Han W, Wu S, Dong F, et al. A confined growth strategy to construct 3DOM SiO2 nanoreactor in-situ embedded Co3O4 nanoparticles catalyst for the catalytic combustion of VOCs: Superior H2O and SO2 resistance. Nano Research, 2024, 17(1): 207-220. https://doi.org/10.1007/s12274-023-5498-0
Topics:

1045

Views

11

Crossref

14

Web of Science

14

Scopus

0

CSCD

Altmetrics

Received: 08 November 2022
Revised: 06 January 2023
Accepted: 12 January 2023
Published: 28 April 2023
© Tsinghua University Press 2023
Return