AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Strong interaction between phosphorus and wrinkle carbon sphere promote the performance of phosphorus anode material for lithium-ion batteries

Xin Li1,2,§Shaojie Zhang3,§Juan Du1( )Lele Liu3Chong Mao4( )Jie Sun3Aibing Chen1( )
College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
Department of Chemical Engineering, University of Johannesburg, Johannesburg 2028, South Africa
Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
Zhuhai Smoothway Electronic Materials Co., Ltd., Zhuhai 519050, China

§ Xin Li and Shaojie Zhang contributed equally to this work.

Show Author Information

Graphical Abstract

In this work, we have studied the key effect of wrinkle carbon on the vaporization–condensation process of red phosphorus (RP). It can be seen that the wrinkle carbon with more contents of pentagon structure (C5) and heptagon structure (C7) has strong binding energy with P4 molecule, which can promote the adsorption and transformation from P4 to RP.

Abstract

The durable red phosphorus (RP) anode for lithium-ion batteries (LIBs) has attracted great attention owing to its high theoretical specific capacity (2596 mA∙h∙g−1) and moderate lithiation potential (~ 0.7 V vs. Li+/Li). However, its intrinsic poor electrical conductivity, enormous volume expansion, and soluble intermediates (lithium polyphosphides, LixPPs) lead to poor cycling performance. To overcome these issues, we introduce a new type of wrinkle carbon spheres as the host for loading phosphorus through a vaporization–condensation strategy. Density functional theory calculations reveal that the wrinkle carbon sphere shows strong binding energy with P4 molecule, accelerating the adsorption and polymerization of P4, thus enhancing RP conversion in the preparation process. In the lithiation/delithiation process, the wrinkle carbon has strong bonding with phosphorus and strong adsorption with LixPPs, resulting in excellent cycling performance. The design strategy to modify RP polymerization via reforming the interaction between wrinkle carbon spheres and phosphorus expands the application of RP for LIBs and beyond.

Electronic Supplementary Material

Download File(s)
12274_2023_5499_MOESM1_ESM.pdf (970.4 KB)

References

[1]

Wu, F.; He, Z. C.; Wang, M. Q.; Huang, Y. D.; Wang, F. Construction of three-dimensional carbon framework-loaded silicon nanoparticles anchored by carbon film for high-performance lithium-ion battery anode materials. Nano Res. 2022, 15, 6168–6175.

[2]

Sheng, Q. Q.; Li, Q.; Xiang, L. X.; Huang, T.; Mai, Y. Y.; Han, L. Double diamond structured bicontinuous mesoporous titania templated by a block copolymer for anode material of lithium-ion battery. Nano Res. 2021, 14, 992–997.

[3]

Gao, R. H.; Zhang, Q.; Zhao, Y.; Han, Z. Y.; Sun, C. B.; Sheng, J. Z.; Zhong, X. W.; Chen, B.; Li, C.; Ni, S. Y. et al. Regulating polysulfide redox kinetics on a self-healing electrode for high-performance flexible lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2110313.

[4]

Feng, X. N.; Ren, D. S.; He, X. M.; Ouyang, M. G. Mitigating thermal runaway of lithium-ion batteries. Joule 2020, 4, 743–770.

[5]

Sheng, J. Z.; Zhang, Q.; Sun, C. B.; Wang, J. X.; Zhong, X. W.; Chen, B.; Li, C.; Gao, R. H.; Han, Z. Y.; Zhou, G. M. Crosslinked nanofiber-reinforced solid-state electrolytes with polysulfide fixation effect towards high safety flexible lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2203272.

[6]

Cao, Y.; Wang, M. D.; Wang, H. J.; Han, C. Y.; Pan, F. S.; Sun, J. Covalent organic framework for rechargeable batteries: Mechanisms and properties of ionic conduction. Adv. Energy Mater. 2022, 12, 2200057.

[7]

Li, H.; Gao, R. H.; Chen, B.; Zhou, C.; Shao, F.; Wei, H.; Han, Z. Y.; Hu, N. T.; Zhou, G. M. Vacancy-rich MoSSe with sulfiphilicity-lithiophilicity dual function for kinetics-enhanced and dendrite-free Li-S batteries. Nano Lett. 2022, 22, 4999–5008.

[8]

Huang, X. L.; Zhao, F. Y.; Qi, Y.; Qiu, Y. A.; Chen, J. S.; Liu, H. K.; Dou, S. X.; Wang, Z. M. Red phosphorus: A rising star of anode materials for advanced K-ion batteries. Energy Storage Mater. 2021, 42, 193–208.

[9]

Xu, T.; Li, D. H.; Chen, S.; Sun, Y. Y.; Zhang, H. W.; Xia, Y. Z.; Yang, D. J. Nanoconfinement of red phosphorus nanoparticles in seaweed-derived hierarchical porous carbonaceous fibers for enhanced lithium ion storage. Chem. Eng. J. 2018, 345, 604–610.

[10]

Liu, H.; Zhang, S. X.; Zhu, Q. Z.; Cao, B.; Zhang, P.; Sun, N.; Xu, B.; Wu, F.; Chen, R. J. Fluffy carbon-coated red phosphorus as a highly stable and high-rate anode for lithium-ion batteries. J. Mater. Chem. A 2019, 7, 11205–11213.

[11]

Sun, Y. M.; Wang, L.; Li, Y. B.; Li, Y. Z.; Lee, H. R.; Pei, A.; He, X. M.; Cui, Y. Design of red phosphorus nanostructured electrode for fast-charging lithium-ion batteries with high energy density. Joule 2019, 3, 1080–1093.

[12]

Han, X. P.; Sun, J. Improved fast-charging performances of phosphorus electrodes using the intrinsically flame-retardant LiFSI based electrolyte. J. Power Sources 2020, 474, 228664.

[13]

Han, X. P.; Zhang, Z. X.; Han, M. Y.; Cui, Y. R.; Sun, J. Fabrication of red phosphorus anode for fast-charging lithium-ion batteries based on TiN/TiP2-enhanced interfacial kinetics. Energy Storage Mater. 2020, 26, 147–156.

[14]

Liu, D.; Huang, X. K.; Qu, D. Y.; Zheng, D.; Wang, G. W.; Harris, J.; Si, J. Y.; Ding, T. Y.; Chen, J. H.; Qu, D. Y. Confined phosphorus in carbon nanotube-backboned mesoporous carbon as superior anode material for sodium/potassium-ion batteries. Nano Energy 2018, 52, 1–10.

[15]

Zhang, Y. M.; Zhang, S. J.; Cao, Y.; Wang, H. L.; Sun, J. T.; Liu, C.; Han, X. P.; Liu, S.; Yang, Z. X.; Sun, J. Facile separator modification strategy for trapping soluble polyphosphides and enhancing the electrochemical performance of phosphorus anode. Nano Lett. 2022, 22, 1795–1803.

[16]

Han, X. P.; Han, J. P.; Liu, C.; Sun, J. Promise and challenge of phosphorus in science, technology, and application. Adv. Funct. Mater. 2018, 28, 1803471.

[17]

Han, X. P.; Wang, X. J.; Han, M. Y.; Sun, J. A full battery system of pre-lithiated phosphorus/sulfurized pyrolyzed poly(acrylonitrile) with an effective electrolyte and improved safety. Green Chem. 2020, 22, 4252–4258.

[18]

Ni, J. F.; Li, L.; Lu, J. Phosphorus: An anode of choice for sodium-ion batteries. ACS Energy Lett. 2018, 3, 1137–1144.

[19]

Bai, A. J.; Wang, L.; Li, J. Y.; He, X. M.; Wang, J. X.; Wang, J. L. Composite of graphite/phosphorus as anode for lithium-ion batteries. J. Power Sources 2015, 289, 100–104.

[20]

Jiao, X. X.; Liu, Y. Y.; Li, B.; Zhang, W. X.; He, C.; Zhang, C. F.; Yu, Z. X.; Gao, T. Y.; Song, J. X. Amorphous phosphorus-carbon nanotube hybrid anode with ultralong cycle life and high-rate capability for lithium-ion batteries. Carbon 2019, 148, 518–524.

[21]

Lin, H. P.; Chen, K. T.; Chang, C. B.; Tuan, H. Y. Aluminum phosphide as a high-performance lithium-ion battery anode. J. Power Sources 2020, 465, 228262.

[22]

Xiao, W.; Li, X. F.; Cao, B.; Huang, G.; Xie, C.; Qin, J.; Yang, H. J.; Wang, J. J.; Sun, X. L. Constructing high-rate and long-life phosphorus/carbon anodes for potassium-ion batteries through rational nanoconfinement. Nano Energy 2021, 83, 105772.

[23]

Li, M.; Feng, N.; Liu, M. M.; Cong, Z. F.; Sun, J. M.; Du, C. H.; Liu, Q. B.; Pu, X.; Hu, W. G. Hierarchically porous carbon/red phosphorus composite for high-capacity sodium-ion battery anode. Sci. Bull. 2018, 63, 982–989.

[24]

Wang, L. Y.; Guo, H. L.; Wang, W.; Teng, K. Y.; Xu, Z. W.; Chen, C.; Li, C. Y.; Yang, C. Y.; Hu, C. S. Preparation of sandwich-like phosphorus/reduced graphene oxide composites as anode materials for lithium-ion batteries. Electrochim. Acta 2016, 211, 499–506.

[25]

Li, W. H.; Yang, Z. Z.; Li, M. S.; Jiang, Y.; Wei, X.; Zhong, X. W.; Gu, L.; Yu, Y. Amorphous red phosphorus embedded in highly ordered mesoporous carbon with superior lithium and sodium storage capacity. Nano Lett. 2016, 16, 1546–1553.

[26]

Han, L. F.; Wang, J. L.; Mu, X. W.; Liao, C.; Cai, W.; Zhao, Z. X.; Kan, Y. C.; Xing, W. Y.; Hu, Y. Anisotropic, low-tortuosity, and ultra-thick red P@C-wood electrodes for sodium-ion batteries. Nanoscale 2020, 12, 14642–14650.

[27]

Sun, J.; Lee, H. W.; Pasta, M.; Sun, Y. M.; Liu, W.; Li, Y. B.; Lee, H. R.; Liu, N.; Cui, Y. Carbothermic reduction synthesis of red phosphorus-filled 3D carbon material as a high-capacity anode for sodium ion batteries. Energy Storage Mater. 2016, 4, 130–136.

[28]

Qian, J. F.; Wu, X. Y.; Cao, Y. L.; Ai, X. P.; Yang, H. X. High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew. Chem., Int. Ed. 2013, 52, 4633–4636.

[29]

He, S. A.; Liu, Q.; Cui, Z.; Xu, K. B.; Zou, R. J.; Luo, W.; Zhu, M. F. Red phosphorus anchored on nitrogen-doped carbon bubble-carbon nanotube network for highly stable and fast-charging lithium-ion batteries. Small 2022, 18, 2105866.

[30]

García-Mateos, F. J.; Rosas, J. M.; Ruiz-Rosas, R.; Rodríguez-Mirasol, J.; Cordero, T. Highly porous and conductive functional carbon fibers from electrospun phosphorus-containing lignin fibers. Carbon 2022, 200, 134–148.

[31]

Lee, G. H.; Jo, M. R.; Zhang, K.; Kang, Y. M. A reduced graphene oxide-encapsulated phosphorus/carbon composite as a promising anode material for high-performance sodium-ion batteries. J. Mater. Chem. A 2017, 5, 3683–3690.

[32]

Jin, H. C.; Xin, S.; Chuang, C. H.; Li, W. D.; Wang, H. Y.; Zhu, J.; Xie, H. Y.; Zhang, T. M.; Wan, Y. Y.; Qi, Z. K. et al. Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage. Science 2020, 370, 192–197.

[33]

Zhang, S. J.; Liu, C.; Wang, H. L.; Wang, H. P.; Sun, J. T.; Zhang, Y. M.; Han, X. P.; Cao, Y.; Liu, S.; Sun, J. A covalent P–C bond stabilizes red phosphorus in an engineered carbon host for high-performance lithium-ion battery anodes. ACS Nano 2021, 15, 3365–3375.

[34]

Zhou, J. B.; Liu, X. J.; Zhu, L. Q.; Niu, S. W.; Cai, J. Y.; Zheng, X. S.; Ye, J.; Lin, Y.; Zheng, L.; Zhu, Z. X. et al. High-spin sulfur-mediated phosphorous activation enables safe and fast phosphorus anodes for sodium-ion batteries. Chem 2020, 6, 221–233.

[35]

Gan, G. Q.; Fan, S. Y.; Li, X. Y.; Wang, J.; Bai, C. P.; Guo, X. C.; Tade, M.; Liu, S. M. Nature of intrinsic defects in carbon materials for electrochemical dechlorination of 1,2-dichloroethane to ethylene. ACS Catal. 2021, 11, 14284–14292.

[36]

Zhu, J. W.; Huang, Y. P.; Mei, W. C.; Zhao, C. Y.; Zhang, C. T.; Zhang, J.; Amiinu, I. S.; Mu, S. C. Effects of intrinsic pentagon defects on electrochemical reactivity of carbon nanomaterials. Angew. Chem., Int. Ed. 2019, 58, 3859–3864.

[37]

Tang, C.; Wang, H. F.; Chen, X.; Li, B. Q.; Hou, T. Z.; Zhang, B. S.; Zhang, Q.; Titirici, M. M.; Wei, F. Topological defects in metal-free nanocarbon for oxygen electrocatalysis. Adv. Mater. 2016, 28, 6845–6851.

[38]

Liu, C.; Han, M. Y.; Cao, Y.; Chen, L.; Ren, W. C.; Zhou, G. M.; Chen, A. B.; Sun, J. Unlocking the dissolution mechanism of phosphorus anode for lithium-ion batteries. Energy Storage Mater. 2021, 37, 417–423.

Nano Research
Pages 9273-9279
Cite this article:
Li X, Zhang S, Du J, et al. Strong interaction between phosphorus and wrinkle carbon sphere promote the performance of phosphorus anode material for lithium-ion batteries. Nano Research, 2023, 16(7): 9273-9279. https://doi.org/10.1007/s12274-023-5499-z
Topics:

964

Views

17

Crossref

19

Web of Science

19

Scopus

0

CSCD

Altmetrics

Received: 17 November 2022
Revised: 01 January 2023
Accepted: 12 January 2023
Published: 14 March 2023
© Tsinghua University Press 2023
Return