AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

One-step, in situ formation of WN-W2C heterojunctions implanted on N doped carbon nanorods as efficient oxygen reduction catalyst for metal-air battery

Yue Du1( )Wenxue Chen1Lina Zhou1Rui Hu2Shizhu Wang2Xueqing Li1Yunlong Xie1Lun Yang1Yisi Liu1( )Zhenhui Liu2( )
Institute for Advanced Materials, Hubei Normal University, Huangshi 435002, China
College of Material Science and Engineering, Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Show Author Information

Graphical Abstract

WN-W2C heterojunctions were derived from polyoxometalate@polyaniline composite as effective and stable metal air electrode.

Abstract

Transition metal nitrides and carbides have attracted intensive attentions in metal-air battery application due to their metallic electron transport behavior and high chemical stability toward the oxygen reduction reaction (ORR). Herein, the polyoxometalate@polyaniline composite derived WN-W2C heterostructured composite (WN-W2C@pDC) has been fabricated through an in situ nitriding-carbonization strategy, with WN-W2C nanoparticles implanted on N doped carbon nanorods. As-fabricated WN-W2C@pDC demonstrates prominent electrocatalytic performance towards ORR and excellent cycling stability in metal-air battery, which possesses positive half-wave potential and large diffusion limiting current density (0.81 V and 5.8 mA·cm−2). Moreover, it demonstrates high peak power density of 157.4 mW·cm−2 as Al-air primary cathode and excellent stability at the discharge–charge test (> 500 h) of Zn-air secondary battery. The excellent activity and durability of WN-W2C@pDC catalyst should be attributed to the combined effect of intimate WN-W2C heterointerfaces, unique embedded nanoparticles structure, and excellent electrical media of N doped carbon, confirmed by a series of contrast experiments.

Electronic Supplementary Material

Download File(s)
12274_2023_5501_MOESM1_ESM.pdf (1.4 MB)

References

[1]

Li, X. N.; Cheng, Z. X.; Wang, X. L. Understanding the mechanism of the oxygen evolution reaction with consideration of spin. Electrochem. Energy Rev. 2021, 4, 136–145.

[2]

Chen, J. W.; Chen, H. X.; Yu, T. W.; Li, R. C.; Wang, Y. S.; Shao, Z. P.; Song, S. Q. Recent advances in the understanding of the surface reconstruction of oxygen evolution electrocatalysts and materials development. Electrochem. Energy Rev. 2021, 4, 566–600.

[3]

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

[4]

Liu, Y. S.; Chen, Z. C.; Li, Z. X.; Zhao, N.; Xie, Y. L.; Du, Y.; Xuan, J. N.; Xiong, D. B.; Zhou, J. Q.; Cai, L. et al. CoNi nanoalloy-Co-N4 composite active sites embedded in hierarchical porous carbon as bi-functional catalysts for flexible Zn-air battery. Nano Energy 2022, 99, 107325.

[5]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[6]

Yu, M. H.; Wang, Z. K.; Hou, C.; Wang, Z. L.; Liang, C. L.; Zhao, C. Y.; Tong, Y. X.; Lu, X. H.; Yang, S. H. Nitrogen-doped Co3O4 mesoporous nanowire arrays as an additive-free air-cathode for flexible solid-state zinc-air batteries. Adv. Mater. 2017, 29, 1602868.

[7]

Lu, X. F.; Chen, Y.; Wang, S. B.; Gao, S. Y.; Lou, X. W. Interfacing manganese oxide and cobalt in porous graphitic carbon polyhedrons boosts oxygen electrocatalysis for Zn-air batteries. Adv. Mater. 2019, 31, 1902339.

[8]
Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem. , Int. Ed., in press, https://doi.org/10.1002/anie.202212335.
[9]

Zhang, Q.; Luo, F.; Long, X.; Yu, X. X.; Qu, K. G.; Yang, Z. H. N, P doped carbon nanotubes confined WN-Ni Mott–Schottky heterogeneous electrocatalyst for water splitting and rechargeable zinc-air batteries. Appl. Catal. B: Environ. 2021, 298, 120511.

[10]

Liang, S.; Zou, L. C.; Zheng, L. J.; Li, F.; Wang, X. X.; Song, L. N.; Xu, J. J. Highly stable Co single atom confined in hierarchical carbon molecular sieve as efficient electrocatalysts in metal-air batteries. Adv. Energy Mater. 2022, 12, 2103097.

[11]

Yu, H.; Luo, Y. H.; Wu, C. C.; Jia, A. Z.; Wang, Y. J.; Wu, L. L.; Li, J. D. Conductive tungsten oxynitride supported highly dispersed cobalt nanoclusters for enhanced oxygen reduction. Chem. Eng. J. 2022, 449, 137542.

[12]

Yang, X. X.; Zheng, X. C.; Li, H. X.; Luo, B. C.; He, Y. K.; Yao, Y.; Zhou, H. H.; Yan, Z. H.; Kuang, Y. F.; Huang, Z. Y. Non-noble-metal catalyst and Zn/graphene film for low-cost and ultra-long-durability solid-state Zn-air batteries in harsh electrolytes. Adv. Funct. Mater. 2022, 32, 2200397.

[13]

Chen, D. F.; Pan, L.; Pei, P. C.; Song, X.; Ren, P.; Zhang, L. Cobalt-based oxygen electrocatalysts for zinc-air batteries: Recent progress, challenges, and perspectives. Nano Res. 2022, 15, 5038–5063.

[14]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

[15]

Jin, C. Y.; Fan, S. J.; Zhuang, Z. C.; Zhou, Y. S. Single-atom nanozymes: From bench to bedside. Nano Res. 2023, 16, 1992–2002.

[16]

Wang, Z.; Jin, X. Y.; Zhu, C.; Liu, Y. P.; Tan, H.; Ku, R. Q.; Zhang, Y. Q.; Zhou, L. J.; Liu, Z.; Hwang, S. J. et al. Atomically dispersed Co2-N6 and Fe-N4 costructures boost oxygen reduction reaction in both alkaline and acidic media. Adv. Mater. 2021, 33, 2104718.

[17]

Wu, L. B.; Zhang, F. H.; Song, S. W.; Ning, M. H.; Zhu, Q.; Zhou, J. Q.; Gao, G. H.; Chen, Z. Y.; Zhou, Q. C.; Xing, X. X. et al. Efficient alkaline water/seawater hydrogen evolution by a nanorod-nanoparticle-structured Ni-MoN catalyst with fast water-dissociation kinetics. Adv. Mater. 2022, 34, 2201774.

[18]

Wu, X. L.; Han, G. S.; Wen, H.; Liu, Y. Y.; Han, L.; Cui, X. Y.; Kou, J. J.; Li, B. J.; Jiang, J. C. Co2N nanoparticles anchored on N-doped active carbon as catalyst for oxygen reduction reaction in zinc-air battery. Energy Environ. Mater. 2022, 5, 935–943.

[19]

Das, D.; Das, A.; Reghunath, M.; Nanda, K. K. Phosphine-free avenue to Co2P nanoparticle encapsulated N, P co-doped CNTs: A novel non-enzymatic glucose sensor and an efficient electrocatalyst for oxygen evolution reaction. Green Chem. 2017, 19, 1327–1335.

[20]

Zhuang, Z. C.; Li, Y.; Huang, J. Z.; Li, Z. L.; Zhao, K. N.; Zhao, Y. L.; Xu, L.; Zhou, L.; Moskaleva, L. V.; Mai, L. Q. Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 2019, 64, 617–624.

[21]

Xie, Y.; Zhang, Y.; Zhang, M. R.; Zhang, Y.; Liu, J. Q.; Zhou, Q.; Wang, W. F.; Cui, J. W.; Wang, Y.; Chen, Y. et al. Synthesis of W2N nanorods-graphene hybrid structure with enhanced oxygen reduction reaction performance. Int. J. Hydrogen Energy 2017, 42, 25924–25932.

[22]

Wang, R.; Yang, H. C.; Lu, N. D.; Lei, S. L.; Jia, D. L.; Wang, Z. X.; Liu, Z. H.; Wu, X. G.; Zheng, H. Z.; Ali, S. et al. Precise identification of active sites of a high bifunctional performance 3D Co/N-C catalyst in zinc-air batteries. Chem. Eng. J. 2022, 433, 134500.

[23]

Zhuang, Z. C.; Huang, J. Z.; Li, Y.; Zhou, L.; Mai, L. Q. The holy grail in platinum-free electrocatalytic hydrogen evolution: Molybdenum-based catalysts and recent advances. ChemElectroChem 2019, 6, 3570–3589.

[24]

Ma, Y. Y.; Yu, Y.; Wang, J. H.; Lipton, J.; Tan, H. N.; Zheng, L. R.; Yang, T.; Liu, Z. L.; Loh, X. J.; Pennycook, S. J. et al. Localizing tungsten single atoms around tungsten nitride nanoparticles for efficient oxygen reduction electrocatalysis in metal-air batteries. Adv. Sci. 2022, 9, 2105192.

[25]

Sun, J. W.; Xu, W. J.; Lv, C. X.; Zhang, L. J.; Shakouri, M.; Peng, Y. H.; Wang, Q. Q.; Yang, X. F.; Yuan, D.; Huang, M. H. et al. Co/MoN hetero-interface nanoflake array with enhanced water dissociation capability achieves the Pt-like hydrogen evolution catalytic performance. Appl. Catal. B: Environ. 2021, 286, 119882.

[26]

Ma, F.; Srinivas, K.; Zhang, X. J.; Zhang, Z. H.; Wu, Y.; Liu, D. W.; Zhang, W. L.; Wu, Q.; Chen, Y. F. Mo2N quantum dots decorated N-doped graphene nanosheets as dual-functional interlayer for dendrite-free and shuttle-free lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2206113.

[27]

Zang, Y.; Yang, B. P.; Li, A.; Liao, C. G.; Chen, G.; Liu, M.; Liu, X. H.; Ma, R. Z.; Zhang, N. Tuning interfacial active sites over porous Mo2N-supported cobalt sulfides for efficient hydrogen evolution reactions in acid and alkaline electrolytes. ACS Appl. Mater. Interfaces 2021, 13, 41573–41583.

[28]

Jamil, R.; Ali, R.; Loomba, S.; Xian, J.; Yousaf, M.; Khan, K.; Shabbir, B.; McConville, C. F.; Mahmood, A.; Mahmood, N. The role of nitrogen in transition-metal nitrides in electrochemical water splitting. Chem Catal. 2021, 1, 802–854.

[29]

Chen, J.; Pan, A. Q.; Zhang, W. C.; Cao, X. X.; Lu, R.; Liang, S. Q.; Cao, G. Z. Melamine-assisted synthesis of ultrafine Mo2C/Mo2N@N-doped carbon nanofibers for enhanced alkaline hydrogen evolution reaction activity. Sci. China Mater. 2021, 64, 1150–1158.

[30]

Kumar, R.; Ahmed, Z.; Kaur, H.; Bera, C.; Bagchi, V. Probing into the effect of heterojunctions between Cu/Mo2C/Mo2N on HER performance. Catal. Sci. Technol. 2020, 10, 2213–2220.

[31]

Wang, Z. H.; Wang, X. F.; Tan, Z.; Song, X. Z. Polyoxometalate/metal-organic framework hybrids and their derivatives for hydrogen and oxygen evolution electrocatalysis. Mater. Today Energy 2021, 19, 100618.

[32]

Bai, Q.; Shen, F. C.; Li, S. L.; Liu, J.; Dong, L. Z.; Wang, Z. M.; Lan, Y. Q. Cobalt@nitrogen-doped porous carbon fiber derived from the electrospun fiber of bimetal-organic framework for highly active oxygen reduction. Small Methods 2018, 2, 1800049.

[33]

Shao, M. M.; Chen, W. Z.; Ding, S. J.; Lo, K. H.; Zhong, X. W.; Yao, L. M.; Ip, W. F.; Xu, B. M.; Wang, X. S.; Pan, H. WXy/g-C3N4 (WXy = W2C, WS2, or W2N) composites for highly efficient photocatalytic water splitting. ChemSusChem 2019, 12, 3355–3362.

[34]

Bhadra, B. N.; Mondol, M. M. H.; Jhung, S. H. Enhanced oxidative desulfurization of liquid model fuel under microwave irradiation over W2N@C catalyst nanoarchitectonics. Chem. Eng. J. 2022, 440, 135841.

[35]

Liu, D. L.; Xu, Y.; Sun, M. Y.; Huang, Y.; Yu, Y. F.; Zhang, B. Photothermally assisted photocatalytic conversion of CO2-H2O into fuels over a WN-WO3 Z-scheme heterostructure. J. Mater. Chem. A 2020, 8, 1077–1083.

[36]

Jin, C.; Deng, H. J.; Zhang, J.; Hao, Y.; Liu, J. J. Jagged carbon nanotubes from polyaniline: Strain-driven high-performance for Zn-air battery. Chem. Eng. J. 2022, 434, 134617.

[37]
Wang, B. J.; Huang, F. Z.; Wu, H.; Xu, Z. J.; Wang, S. P.; Han, Q. H.; Liu, F. H.; Li, S. K.; Zhang, H. Enhanced interfacial polarization of defective porous carbon confined CoP nanoparticles forming Mott-Schottky heterojunction for efficient electromagnetic wave absorption. Nano Res., in press, https://doi.org/10.1007/s12274-022-4779-3.
[38]

Xu, F.; Ding, B. C.; Qiu, Y. Q.; Dong, R. H.; Zhuang, W. Q.; Xu, X. S.; Han, H. J.; Yang, J. Y.; Wei, B. Q.; Wang, H. Q. et al. Generalized domino-driven synthesis of hollow hybrid carbon spheres with ultrafine metal nitrides/oxides. Matter 2020, 3, 246–260.

[39]

Khan, N. A.; Bhadra, B. N.; Park, S. W.; Han, Y. S.; Jhung, S. H. Tungsten nitride, well-dispersed on porous carbon: Remarkable catalyst, produced without addition of ammonia, for the oxidative desulfurization of liquid fuel. Small 2020, 16, 1901564.

[40]

Kim, J. B.; Jang, B.; Lee, H. J.; Han, W. S.; Lee, D. J.; Lee, H. B. R.; Hong, T. E.; Kim, S. H. A controlled growth of WNx and WCx thin films prepared by atomic layer deposition. Mater. Lett. 2016, 168, 218–222.

[41]

Lin, L. L.; Liu, J. J.; Liu, X.; Gao, Z. R.; Rui, N.; Yao, S. Y.; Zhang, F.; Wang, M. L.; Liu, C.; Han, L. L. et al. Reversing sintering effect of Ni particles on γ-Mo2N via strong metal support interaction. Nat. Commun. 2021, 12, 6978.

[42]

Gao, Y.; Lang, Z. L.; Yu, F. Y.; Tan, H. Q.; Yan, G.; Wang, Y. H.; Ma, Y. Y.; Li, Y. G. A Co2P/WC nano-heterojunction covered with N-doped carbon as highly efficient electrocatalyst for hydrogen evolution reaction. ChemSusChem 2018, 11, 1082–1091.

[43]

Wu, S. C.; Huang, Y. H.; Liao, C. R.; Tang, S. Y.; Yang, T. Y.; Wang, Y. C.; Yu, Y. J.; Perng, T. P.; Chueh, Y. L. Rational design of a polysulfide catholyte electrocatalyst by interfacial engineering based on novel MoS2/MoN heterostructures for superior room-temperature Na-S batteries. Nano Energy 2021, 90, 106590.

[44]

Diao, J. X.; Qiu, Y.; Liu, S. Q.; Wang, W. T.; Chen, K.; Li, H. L.; Yuan, W. Y.; Qu, Y. T.; Guo, X. H. Interfacial engineering of W2N/WC heterostructures derived from solid-state synthesis: A highly efficient trifunctional electrocatalyst for ORR, OER, and HER. Adv. Mater. 2020, 32, 1905679.

[45]

Zhang, S. P.; Yao, Y.; Jiao, X. J.; Ma, M. Z.; Huang, H. J.; Zhou, X. F.; Wang, L. F.; Bai, J. T.; Yu, Y. Mo2N-W2N heterostructures embedded in spherical carbon superstructure as highly efficient polysulfide electrocatalysts for stable room-temperature Na-S batteries. Adv. Mater. 2021, 33, 2103846.

[46]

Zhu, Y.; Zheng, H. Y.; Liu, X. Y.; Sun, C. Y.; Dong, M.; Wang, X. L.; Su, Z. M. Ultra-small porous WN/W2C nanoparticles for sustained hydrogen production by a polyoxometalate-intercalated pyrolysis strategy. New J. Chem. 2022, 46, 23292–23296.

[47]

Xu, S. H.; Chu, S. Y.; Yang, L.; Chen, Y.; Wang, Z. Y.; Jiang, C. L. Tungsten nitride/carbide nanocomposite encapsulated in nitrogen-doped carbon shell as an effective and durable catalyst for hydrogen evolution reaction. New J. Chem. 2018, 42, 19557–19563.

[48]

Sun, S. C.; Jiang, H.; Chen, Z. Y.; Chen, Q.; Ma, M. Y.; Zhen, L.; Song, B.; Xu, C. Y. Bifunctional WC-supported RuO2 nanoparticles for robust water splitting in acidic media. Angew. Chem., Int. Ed. 2022, 61, e202202519.

[49]

Zhu, J. X.; Xia, L. X.; Yu, R. H.; Lu, R. H.; Li, J. T.; He, R. H.; Wu, Y. C.; Zhang, W.; Hong, X. F.; Chen, W. et al. Ultrahigh stable methanol oxidation enabled by a high hydroxyl concentration on Pt clusters/MXene interfaces. J. Am. Chem. Soc. 2022, 144, 15529–15538.

[50]

Li, H.; Li, Q.; Wen, P.; Williams, T. B.; Adhikari, S.; Dun, C.; Lu, C.; Itanze, D.; Jiang, L.; Carroll, D. L. et al. Colloidal cobalt phosphide nanocrystals as trifunctional electrocatalysts for overall water splitting powered by a zinc-air battery. Adv. Mater. 2018, 30, 1705796.

[51]

Chen, D. F.; Pan, L.; Pei, P. C.; Song, X.; Ren, P.; Zhang, L. Cobalt-based oxygen electrocatalysts for zinc-air batteries: Recent progress, challenges, and perspectives. Nano Res. 2022, 15, 5038–5063.

[52]

Zheng, H. Z.; Ma, F.; Yang, H. C.; Wu, X. G.; Wang, R.; Jia, D. L.; Wang, Z. X.; Lu, N. D.; Ran, F.; Peng, S. L. Mn, N co-doped Co nanoparticles/porous carbon as air cathode for highly efficient rechargeable Zn-air batteries. Nano Res. 2022, 15, 1942–1948.

[53]

Meng, H. L.; Lin, S. Y.; Cao, Y.; Wang, A. J.; Zhang, L.; Feng, J. J. CoFe alloy embedded in N-doped carbon nanotubes derived from triamterene as a highly efficient and durable electrocatalyst beyond commercial Pt/C for oxygen reduction. J. Colloid Interface Sci. 2021, 604, 856–865.

[54]

Guo, F. J.; Zhang, M. Y.; Yi, S. C.; Li, X. X.; Xin, R.; Yang, M.; Liu, B.; Chen, H. B.; Li, H. M.; Liu, Y. J. Metal-coordinated porous polydopamine nanospheres derived Fe3N-FeCo encapsulated N-doped carbon as a highly efficient electrocatalyst for oxygen reduction reaction. Nano Res. Energy 2022, 1, e9120027.

[55]

Ozsdolay, B. D.; Mulligan, C. P.; Balasubramanian, K.; Huang, L. P.; Khare, S. V.; Gall, D. Cubic β-WNx layers: Growth and properties vs. N-to-W ratio. Surf. Coat. Technol. 2016, 304, 98–107.

[56]

Sun, R. M.; Wu, R. Z.; Li, X. S.; Feng, J. J.; Zhang, L.; Wang, A. J. Well entrapped platinum-iron nanoparticles on three-dimensional nitrogen-doped ordered mesoporous carbon as highly efficient and durable catalyst for oxygen reduction and zinc-air battery. J. Colloid Interface Sci. 2022, 621, 275–284.

[57]

Han, J. X.; Bao, H. L.; Wang, J. Q.; Zheng, L. R.; Sun, S. R.; Wang, Z. L.; Sun, C. W. 3D N-doped ordered mesoporous carbon supported single-atom Fe-N-C catalysts with superior performance for oxygen reduction reaction and zinc-air battery. Appl. Catal. B: Environ. 2021, 280, 119411.

[58]
Zhu, M. S. Cryogenic electrolytes and catalysts for zinc air batteries. Nano Res. Energy, in press, https://doi.org/10.26599/NRE.2023.9120038.
[59]

Zhu, J. X.; Li, S. K.; Zhuang, Z. C.; Gao, S.; Hong, X. F.; Pan, X. L.; Yu, R. H.; Zhou, L.; Moskaleva, L. V.; Mai, L. Q. Ultrathin metal silicate hydroxide nanosheets with moderate metal-oxygen covalency enables efficient oxygen evolution. Energy Environ. Mater. 2022, 5, 231–237.

[60]

Zhu, J. X.; Xia, L. X.; Yang, W. X.; Yu, R. H.; Zhang, W.; Luo, W.; Dai, Y. H.; Wei, W.; Zhou, L.; Zhao, Y. et al. Activating inert sites in cobalt silicate hydroxides for oxygen evolution through atomically doping. Energy Environ. Mater. 2022, 5, 655–661.

Nano Research
Pages 8773-8781
Cite this article:
Du Y, Chen W, Zhou L, et al. One-step, in situ formation of WN-W2C heterojunctions implanted on N doped carbon nanorods as efficient oxygen reduction catalyst for metal-air battery. Nano Research, 2023, 16(7): 8773-8781. https://doi.org/10.1007/s12274-023-5501-9
Topics:

923

Views

10

Crossref

8

Web of Science

10

Scopus

0

CSCD

Altmetrics

Received: 12 December 2022
Revised: 10 January 2023
Accepted: 12 January 2023
Published: 14 March 2023
© Tsinghua University Press 2023
Return