AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Trojan nanobacteria hybridized with prodrug nanocapsules for efficient combined tumor therapy

Mingsong Zang1Yuancheng Ji1Xiaoran Ding2Zhengwei Xu2Jinxing Hou1Jianxin Sun1Jiayun Xu2Shuangjiang Yu2( )Hongcheng Sun2( )Tingting Wang3( )Junqiu Liu1,2( )
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore
Show Author Information

Graphical Abstract

This hybrid of living microorganisms and non-living objects with both the versatility of nanocapsules (chemotherapeutic, photothermal therapy (PTT), and chemodynamic therapy (CDT)) and the active tumor targeting of bacteria has tremendous potential as an antitumor platform.

Abstract

Live bacteria-based drug delivery systems have been raised as promising tools for enhancing drug delivery into tumors due to their active tumor targeting and easy surface modifiability. In this work, a “Trojan nanobacteria hybrid”, E. coli@highly integrated nanocapsules (HINCs) hybrid (HINE-Hybrid), was successfully constructed with HINCs of prodrug based on covalent self-assembly and the facultative anaerobic bacterium E. coli MG 1655 for combined chemotherapy, photothermal therapy (PTT), and chemodynamic therapy (CDT). HINCs were constructed by covalent cross-linking of pillar[5]arene derivatives and cisplatin prodrug linker, which can be endocytosed and lysed to release therapeutic agents. Under the near-infrared (NIR) light (at 808 nm) irradiation, the system temperature can be significantly increased by HINCs, which further leads to the highly efficient generation of reactive oxygen species (ROS). In addition, HINE-Hybrid shows significant antitumor effects in in vitro and in vivo studies and also promotes immune cell infiltration and antitumor cytokine expression in the tumor microenvironment (TME). HINE-Hybrid exerts its anticancer properties efficiently due to selective enrichment and multiplication of E. coli at tumor sites, which is important for the construction of bacterial-assisted antitumor platforms.

Electronic Supplementary Material

Download File(s)
12274_2023_5503_MOESM1_ESM.pdf (1.4 MB)

References

[1]

Gao, T.; Li, J. Z.; Lu, Y.; Zhang, C. Y.; Li, Q.; Mao, J.; Li, L. H. The mechanism between epithelial mesenchymal transition in breast cancer and hypoxia microenvironment. Biomed. Pharmacother. 2016, 80, 393–405.

[2]

Gilkes, D. M. Implications of hypoxia in breast cancer metastasis to bone. Int. J. Mol. Sci. 2016, 17, 1669.

[3]

Ashley, C. E.; Carnes, E. C.; Phillips, G. K.; Padilla, D.; Durfee, P. N.; Brown, P. A.; Hanna, T. N.; Liu, J. W.; Phillips, B.; Carter, M. B. et al. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat. Mater. 2011, 10, 389–397.

[4]

Rudorf, S.; Rädler, J. O. Self-assembly of stable monomolecular nucleic acid lipid particles with a size of 30 nm. J. Am. Chem. Soc. 2012, 134, 11652–11658.

[5]

Yuan, Y. Y.; Zhang, C. J.; Liu, B. A photoactivatable AIE polymer for light-controlled gene delivery: Concurrent endo/lysosomal escape and DNA unpacking. Angew. Chem., Int. Ed. 2015, 54, 11419–11423.

[6]

Nakase, I.; Akita, H.; Kogure, K.; Gräslund, A.; Langel, Ü.; Harashima, H.; Futaki, S. Efficient intracellular delivery of nucleic acid pharmaceuticals using cell-penetrating peptides. Acc. Chem. Res. 2012, 45, 1132–1139.

[7]

Yin, F.; Hu, K.; Chen, Y. Z.; Yu, M. Y.; Wang, D. Y.; Wang, Q. Q.; Yong, K. T.; Lu, F.; Liang, Y. Y.; Li, Z. G. SiRNA delivery with PEGylated graphene oxide nanosheets for combined photothermal and genetherapy for pancreatic cancer. Theranostics 2017, 7, 1133–1148.

[8]

Zheng, D. W.; Chen, Y.; Li, Z. H.; Xu, L.; Li, C. X.; Li, B.; Fan, J. X.; Cheng, S. X.; Zhang, X. Z. Optically-controlled bacterial metabolite for cancer therapy. Nat. Commun. 2018, 9, 1680.

[9]

Hosseinidoust, Z.; Mostaghaci, B.; Yasa, O.; Park, B. W.; Singh, A. V.; Sitti, M. Bioengineered and biohybrid bacteria-based systems for drug delivery. Adv. Drug Deliv. Rev. 2016, 106, 27–44.

[10]

Fan, J. X.; Li, Z. H.; Liu, X. H.; Zheng, D. W.; Chen, Y.; Zhang, X. Z. Bacteria-mediated tumor therapy utilizing photothermally-controlled TNF-α expression via oral administration. Nano Lett. 2018, 18, 2373–2380.

[11]

Luo, C. H.; Huang, C. T.; Su, C. H.; Yeh, C. S. Bacteria-mediated hypoxia-specific delivery of nanoparticles for tumors imaging and therapy. Nano Lett. 2016, 16, 3493–3499.

[12]

Forbes, N. S. Engineering the perfect (bacterial) cancer therapy. Nat. Rev. Cancer 2010, 10, 785–794.

[13]

Zhou, S. B.; Gravekamp, C.; Bermudes, D.; Liu, K. Tumour-targeting bacteria engineered to fight cancer. Nat. Rev. Cancer 2018, 18, 727–743.

[14]

Stauber, R. H.; Siemer, S.; Becker, S.; Ding, G. B.; Strieth, S.; Knauer, S. K. Small meets smaller: Effects of nanomaterials on microbial biology, pathology, and ecology. ACS Nano 2018, 12, 6351–6359.

[15]

Zitvogel, L.; Daillère, R.; Roberti, M. P.; Routy, B.; Kroemer, G. Anticancer effects of the microbiome and its products. Nat. Rev. Microbiol. 2017, 15, 465–478.

[16]

Fan, J. X.; Peng, M. Y.; Wang, H.; Zheng, H. R.; Liu, Z. L.; Li, C. X.; Wang, X. N.; Liu, X. H.; Cheng, S. X.; Zhang, X. Z. Engineered bacterial bioreactor for tumor therapy via Fenton-like reaction with localized H2O2 generation. Adv. Mater. 2019, 31, 1808278.

[17]

Chen, F. M.; Zang, Z. S.; Chen, Z.; Cui, L.; Chang, Z. G.; Ma, A. Q.; Yin, T.; Liang, R. J.; Han, Y. T.; Wu, Z. H. et al. Nanophotosensitizer-engineered Salmonella bacteria with hypoxia targeting and photothermal-assisted mutual bioaccumulation for solid tumor therapy. Biomaterials 2019, 214, 119226.

[18]

Wu, M.; Wu, W. B.; Duan, Y. K.; Li, X. Q.; Qi, G. B.; Liu, B. Photosensitizer–bacteria biohybrids promote photodynamic cancer cell ablation and intracellular protein delivery. Chem. Mater. 2019, 31, 7212–7220.

[19]

Zhang, X. D.; Chen, X. K.; Guo, Y. X.; Gao, G.; Wang, D. D.; Wu, Y. L.; Liu, J. W.; Liang, G. L.; Zhao, Y. L.; Wu, F. G. Dual gate-controlled therapeutics for overcoming bacterium-induced drug resistance and potentiating cancer immunotherapy. Angew. Chem., Int. Ed. 2021, 60, 14013–14021.

[20]

Zheng, P. L.; Fan, M.; Liu, H. F.; Zhang, Y. H.; Dai, X. Y.; Li, H.; Zhou, X. H.; Hu, S. Q.; Yang, X. J.; Jin, Y. et al. Self-propelled and near-infrared-phototaxic photosynthetic bacteria as photothermal agents for hypoxia-targeted cancer therapy. ACS Nano 2021, 15, 1100–1110.

[21]

Tang, L.; Zheng, Y. R.; Melo, M. B.; Mabardi, L.; Castaño, A. P.; Xie, Y. Q.; Li, N.; Kudchodkar, S. B.; Wong, H. C.; Jeng, E. K. et al. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat. Biotechnol. 2018, 36, 707–716.

[22]

Felfoul, O.; Mohammadi, M.; Taherkhani, S.; De Lanauze, D.; Zhong Xu, Y.; Loghin, D.; Essa, S.; Jancik, S.; Houle, D.; Lafleur, M. et al. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat. Nanotechnol. 2016, 11, 941–947.

[23]

Kim, D.; Kim, E.; Kim, J.; Park, K. M.; Baek, K.; Jung, M.; Ko, Y. H.; Sung, W.; Kim, H. S.; Suh, J. H. et al. Direct synthesis of polymer nanocapsules with a noncovalently tailorable surface. Angew. Chem., Int. Ed. 2007, 46, 3471–3474.

[24]

Kim, D.; Kim, E.; Lee, J.; Hong, S.; Sung, W.; Lim, N.; Park, C. G.; Kim, K. Direct synthesis of polymer nanocapsules: Self-assembly of polymer hollow spheres through irreversible covalent bond formation. J. Am. Chem. Soc. 2010, 132, 9908–9919.

[25]

Lee, J.; Baek, K.; Kim, M.; Yun, G.; Ko, Y. H.; Lee, N. S.; Hwang, I.; Kim, J.; Natarajan, R.; Park, C. G. et al. Hollow nanotubular toroidal polymer microrings. Nat. Chem. 2014, 6, 97–103.

[26]

Yun, G.; Hassan, Z.; Lee, J.; Kim, J.; Lee, N. S.; Kim, N. H.; Baek, K.; Hwang, I.; Park, C. G.; Kim, K. Highly stable, water-dispersible metal-nanoparticle-decorated polymer nanocapsules and their catalytic applications. Angew. Chem., Int. Ed. 2014, 53, 6414–6418.

[27]

Kim, E.; Kim, D.; Jung, H.; Lee, J.; Paul, S.; Selvapalam, N.; Yang, Y.; Lim, N.; Park, C. G.; Kim, K. Facile, template-free synthesis of stimuli-responsive polymer nanocapsules for targeted drug delivery. Angew. Chem., Int. Ed. 2010, 49, 4405–4408.

[28]

Kim, E.; Lee, J.; Kim, D.; Lee, K. E.; Han, S. S.; Lim, N.; Kang, J.; Park, C. G.; Kim, K. Solvent-responsive polymer nanocapsules with controlled permeability: Encapsulation and release of a fluorescent dye by swelling and deswelling. Chem. Commun (Camb.) 2009, 1472–1474.

[29]

Roy, I.; Shetty, D.; Hota, R.; Baek, K.; Kim, J.; Kim, C.; Kappert, S.; Kim, K. A Multifunctional subphthalocyanine nanosphere for targeting, labeling, and killing of antibiotic-resistant bacteria. Angew. Chem., Int. Ed. 2015, 54, 15152–15155.

[30]

Min, K. I.; Yun, G.; Jang, Y.; Kim, K. R.; Ko, Y. H.; Jang, H. S.; Lee, Y. S.; Kim, K.; Kim, D. P. Covalent self-assembly and one-step photocrosslinking of tyrosine-rich oligopeptides to form diverse nanostructures. Angew. Chem., Int. Ed. 2016, 55, 6925–6928.

[31]

Zeng, X. L.; Wang, Y. F.; Han, J. X.; Sun, W.; Butt, H. J.; Liang, X. J.; Wu, S. Fighting against drug-resistant tumors using a dual-responsive Pt(IV)/Ru(II) bimetallic polymer. Adv. Mater. 2020, 32, 2004766.

[32]

Park, K. M.; Lee, D. W.; Sarkar, B.; Jung, H.; Kim, J.; Ko, Y. H.; Lee, K. E.; Jeon, H.; Kim, K. Reduction-sensitive, robust vesicles with a non-covalently modifiable surface as a multifunctional drug-delivery platform. Small 2010, 6, 1430–1441.

[33]

Lee, M. H.; Yang, Z. G.; Lim, C. W.; Lee, Y. H.; Dongbang, S.; Kang, C.; Kim, J. S. Disulfide-cleavage-triggered chemosensors and their biological applications. Chem. Rev. 2013, 113, 5071–5109.

[34]

Jung, H. S.; Verwilst, P.; Sharma, A.; Shin, J.; Sessler, J. L.; Kim, J. S. Organic molecule-based photothermal agents: An expanding photothermal therapy universe. Chem. Soc. Rev. 2018, 47, 2280–2297.

[35]

Liu, H. Y.; Chen, D.; Li, L. L.; Liu, T. L.; Tan, L. F.; Wu, X. L.; Tang, F. Q. Multifunctional gold nanoshells on silica nanorattles: A platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity. Angew. Chem., Int. Ed. 2011, 50, 891–895.

[36]

Lai, X. Z.; Feng, Y. S.; Pollard, J.; Chin, J. N.; Rybak, M. J.; Bucki, R.; Epand, R. F.; Epand, R. M.; Savage, P. B. Ceragenins: Cholic acid-based mimics of antimicrobial peptides. Acc. Chem. Res. 2008, 41, 1233–1240.

[37]

Zhang, H. Y.; Li, Q.; Liu, R. L.; Zhang, X. K.; Li, Z. H.; Luan, Y. X. A versatile prodrug strategy to in situ encapsulate drugs in MOF nanocarriers: A case of cytarabine-IR820 prodrug encapsulated ZIF-8 toward chemo-photothermal therapy. Adv. Funct. Mater. 2018, 28, 1802830.

[38]

Wang, D. D.; Wu, H. H.; Zhou, J. J.; Xu, P. P.; Wang, C. L.; Shi, R. H.; Wang, H. B.; Wang, H.; Guo, Z.; Chen, Q. W. In situ one-pot synthesis of MOF–polydopamine hybrid nanogels with enhanced photothermal effect for targeted cancer therapy. Adv. Sci. (Weinh.) 2018, 5, 1800287.

[39]

Shen, S. D.; Chao, Y.; Dong, Z. L.; Wang, G. L.; Yi, X.; Song, G. S.; Yang, K.; Liu, Z.; Cheng, L. Bottom-up preparation of uniform ultrathin rhenium disulfide nanosheets for image-guided photothermal radiotherapy. Adv. Funct. Mater. 2017, 27, 1700250.

[40]

Tang, B. H.; Li, W. L.; Chang, Y. C.; Yuan, B.; Wu, Y. K.; Zhang, M. T.; Xu, J. F.; Li, J.; Zhang, X. A supramolecular radical dimer: High-efficiency NIR-II photothermal conversion and therapy. Angew. Chem., Int. Ed. 2019, 58, 15526–15531.

[41]

Chen, X. L.; Wang, Z. Y.; Sun, X. H.; Han, Y.; Huang, Y. L.; Xi, J. Q.; Bian, X. Y.; Han, J.; Guo, R. Photothermal supramolecular vesicles coassembled from pillar[5]arene and aniline tetramer for tumor eradication in NIR-I and NIR-II biowindows. Chem. Eng. J. 2021, 403, 126423.

[42]

Han, K.; Wang, S. B.; Lei, Q.; Zhu, J. Y.; Zhang, X. Z. Ratiometric biosensor for aggregation-induced emission-guided precise photodynamic therapy. ACS Nano 2015, 9, 10268–10277.

[43]

Casazza, A.; Di Conza, G.; Wenes, M.; Finisguerra, V.; Deschoemaeker, S.; Mazzone, M. Tumor stroma: A complexity dictated by the hypoxic tumor microenvironment. Oncogene 2014, 33, 1743–1754.

[44]

Helmlinger, G.; Yuan, F.; Dellian, M.; Jain, R. K. Interstitial pH and pO2 gradients in solid tumors in vivo: High-resolution measurements reveal a lack of correlation. Nat. Med. 1997, 3, 177–182.

[45]

Turan, I. S.; Yildiz, D.; Turksoy, A.; Gunaydin, G.; Akkaya, E. U. A bifunctional photosensitizer for enhanced fractional photodynamic therapy: Singlet oxygen generation in the presence and absence of light. Angew. Chem., Int. Ed. 2016, 55, 2875–2878.

[46]

Lee, E.; Li, X. S.; Oh, J.; Kwon, N.; Kim, G.; Kim, D.; Yoon, J. A boronic acid-functionalized phthalocyanine with an aggregation-enhanced photodynamic effect for combating antibiotic-resistant bacteria. Chem. Sci. 2020, 11, 5735–5739.

[47]

Galstyan, A.; Schiller, R.; Dobrindt, U. Boronic acid functionalized photosensitizers: A strategy to target the surface of bacteria and implement active agents in polymer coatings. Angew. Chem., Int. Ed. 2017, 56, 10362–10366.

[48]

Zhao, M. L.; Feng, W.; Li, C.; Xiu, W. J.; Li, M. D.; Liu, S. J.; Wang, L. H.; Huang, W.; Zhao, Q. A photothermally-induced HClO-releasing nanoplatform for imaging-guided tumor ablation and bacterial prevention. Biomater. Sci. 2020, 8, 7145–7153.

[49]

Chu, B. B.; Yang, Y. M.; Tang, J. L.; Song, B.; He, Y.; Wang, H. Y. Trojan nanobacteria system for photothermal programmable destruction of deep tumor tissues. Angew. Chem., Int. Ed. 2022, 61, e202208422.

[50]

Xiao, S. S.; Shi, H.; Zhang, Y.; Fan, Y.; Wang, L.; Xiang, L.; Liu, Y. L.; Zhao, L.; Fu, S. Z. Bacteria-driven hypoxia targeting delivery of chemotherapeutic drug proving outcome of breast cancer. J. Nanobiotechnol. 2022, 20, 178.

[51]

Chen, W. F.; Guo, Z. F.; Zhu, Y. N.; Qiao, N.; Zhang, Z. R.; Sun, X. Combination of bacterial–photothermal therapy with an anti-PD-1 peptide depot for enhanced immunity against advanced cancer. Adv. Funct. Mater. 2020, 30, 1906623.

[52]

De Biasi, A. R.; Villena-Vargas, J.; Adusumilli, P. S. Cisplatin-induced antitumor immunomodulation: A review of preclinical and clinical evidence. Clin. Cancer Res. 2014, 20, 5384–5391.

[53]

Yan, T.; Yang, K. Y.; Chen, C.; Zhou, Z. R.; Shen, P. L.; Jia, Y. Y.; Xue, Y.; Zhang, Z. Y.; Shen, X.; Han, X. Synergistic photothermal cancer immunotherapy by Cas9 ribonucleoprotein-based copper sulfide nanotherapeutic platform targeting PTPN2. Biomaterials 2021, 279, 121233.

[54]

Tang, Q.; Peng, X.; Xu, B.; Zhou, X. D.; Chen, J.; Cheng, L. Current status and future directions of bacteria-based immunotherapy. Front. Immunol. 2022, 13, 911783.

Nano Research
Pages 9651-9662
Cite this article:
Zang M, Ji Y, Ding X, et al. Trojan nanobacteria hybridized with prodrug nanocapsules for efficient combined tumor therapy. Nano Research, 2023, 16(7): 9651-9662. https://doi.org/10.1007/s12274-023-5503-7
Topics:

1118

Views

4

Crossref

3

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 26 December 2022
Revised: 10 January 2023
Accepted: 11 January 2023
Published: 20 April 2023
© Tsinghua University Press 2023
Return